Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 306-312.DOI: 10.12096/j.2096-4528.pgt.20012
• New and Renewable Energy • Previous Articles Next Articles
Lei ZHANG1(), Jiying LI2, Qinwei LI3, Mince ZHANG4, Yunfeng GUO5, Lidong ZHANG5,*(
)
Received:
2020-08-03
Published:
2021-06-30
Online:
2021-06-29
Contact:
Lidong ZHANG
Supported by:
目标 | 算法 | 仿真工具 |
寻找最大发电功率确定 风力机最佳偏航[ | 基于功率检测的 爬山算法 | MATLAB |
风机发电效率最大[ | 优化卡尔曼滤波 结合爬山算法 | MATLAB |
偏航系统稳定性[ | 模糊控制算法 | MATLAB |
偏航系统稳定性和控制精度[ | 粒子群算法 | MATLAB |
基于风向预测[ 功率最大化[ | 混合自回归积分移动 平均法结合卡尔曼 滤波[ | MATLAB |
偏航误差[ | 神经网络及随机森林 | — |
提高对风精度[ | 聚类结合风向预测 | — |
降低偏航频次,提高 对风精度,提升发电量[ | 基于卡尔曼滤波的 自适应偏航控制策略 | MATLAB |
提高发电量[ | 细菌群体趋药性算法 | MATLAB+ BLADED |
Tab. 1 Simulation algorithms of yaw execution strategy control of wind turbine
目标 | 算法 | 仿真工具 |
寻找最大发电功率确定 风力机最佳偏航[ | 基于功率检测的 爬山算法 | MATLAB |
风机发电效率最大[ | 优化卡尔曼滤波 结合爬山算法 | MATLAB |
偏航系统稳定性[ | 模糊控制算法 | MATLAB |
偏航系统稳定性和控制精度[ | 粒子群算法 | MATLAB |
基于风向预测[ 功率最大化[ | 混合自回归积分移动 平均法结合卡尔曼 滤波[ | MATLAB |
偏航误差[ | 神经网络及随机森林 | — |
提高对风精度[ | 聚类结合风向预测 | — |
降低偏航频次,提高 对风精度,提升发电量[ | 基于卡尔曼滤波的 自适应偏航控制策略 | MATLAB |
提高发电量[ | 细菌群体趋药性算法 | MATLAB+ BLADED |
1 |
LIU F , SUN F , LIU W , et al. On wind speed pattern and energy potential in China[J]. Applied Energy, 2019, 236, 867- 876.
DOI |
2 | 刘志超, 王洪彬, 沙浩, 等. 我国风电利用技术现状及其前景分析[J]. 发电技术, 2019, 40 (4): 389- 395. |
LIU Z C , WANG H B , SHA H , et al. Status and prospect analysis of wind power utilization technology in China[J]. Power Generation Technology, 2019, 40 (4): 389- 395. | |
3 | 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34 (29): 5029- 5040. |
XUE Y S , LEI X , XUE F , et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34 (29): 5029- 5040. | |
4 |
王君亮, 李君. 风光并网对河南电网系统稳态影响[J]. 电网与清洁能源, 2019, 35 (9): 81- 87.
DOI |
WANG J L , LI J . Effect of integration of wind and photovoltaic power on Henan power grid steady-state[J]. Power System and Clean Energy, 2019, 35 (9): 81- 87.
DOI |
|
5 |
裘昕月, 朱自伟, 黄春辉, 等. 考虑风电出力不确定性的综合能源系统鲁棒优化[J]. 智慧电力, 2020, 48 (5): 1- 6.
DOI |
QIU X Y , ZHU Z W , HUANG C H , et al. Robust optimization of integrated energy system considering uncertainty of wind power output[J]. Smart Power,, 2020, 48 (5): 1- 6.
DOI |
|
6 | 成立峰. 风力发电机组偏航系统误差与控制策略研究[D]. 北京: 华北电力大学, 2017. |
CHENG L F. Study on yaw system error and control strategy of wind turbine[D]. Beijing: North China Electric Power University, 2017. | |
7 |
潘旭东, 黄豫, 唐金锐, 等. 新能源发电发展的影响因素分析及前景展望[J]. 智慧电力, 2019, 47 (11): 41- 47.
DOI |
PAN X D , HUANG Y , TANG J R , et al. Influencing factors and prospects for development of renewable energy power generation[J]. Smart Power, 2019, 47 (11): 41- 47.
DOI |
|
8 |
邓争, 刘国荣, 张真源, 等. 基于虚拟同步机的双馈风电机组自适应控制[J]. 电网与清洁能源, 2020, 36 (8): 73- 81.
DOI |
DENG Z , LIU G R , ZHANG Z Y , et al. Adaptive control of doubly-fed wind turbines based on virtual synchronizer[J]. Power System and Clean Energy, 2020, 36 (8): 73- 81.
DOI |
|
9 | 程雪婷, 张家瑞, 刘新元, 等. 考虑风机排序的风电集群分层有功控制策略[J]. 电力工程技术, 2021, 40 (2): 26- 32. |
CHENG X T , ZHANG J R , LIU X Y , et al. Hierarchical active control of wind power cluster considering ordered wind turbines[J]. Electric Power Engineering Technology, 2021, 40 (2): 26- 32. | |
10 | 李辉, 胡姚刚, 李洋, 等. 大功率并网风电机组状态监测与故障诊断研究综述[J]. 电力自动化设备, 2016, 36 (1): 6- 16. |
LI H , HU Y G , LI Y , et al. Overview of condition monitoring and fault diagnosis for grid-connected high-power wind turbine unit[J]. Electric Power Automation Equipment, 2016, 36 (1): 6- 16. | |
11 | 柴海棣, 赵晓艳, 史波. 基于能量传递模型的永磁直驱变桨变速风电机组功率特性测试方法[J]. 发电技术, 2019, 40 (4): 396- 402. |
CHAI H D , ZHAO X Y , SHI B . Power performance characteristics measurement method of PMSG-based wind turbines with energy transmitted model[J]. Power Generation Technology, 2019, 40 (4): 396- 402. | |
12 | 孙立雄. 基于SCADA数据的风电机组电控系统故障诊断研究[D]. 天津: 河北工业大学, 2014. |
SUN L X. Study on fault diagnosis of wind turbine electronic control System based on SCADA data[D]. Tianjin: Hebei University of Technology, 2014. | |
13 |
陈思, 郭鹏. 基于综合经济效益目标的风电机组偏航控制策略研究[J]. 动力工程学报, 2019, 39 (4): 286- 292.
DOI |
CHEN S , GUO P . Study on yaw control strategy for wind turbines based on the target of comprehensive economic efficiency[J]. Journal of Chinese Society of Power Engineering, 2019, 39 (4): 286- 292.
DOI |
|
14 | 路宏. 基于风向预测的风电机组偏航控制方法研究[D]. 北京: 华北电力大学, 2019. |
LU H. Research on yaw control method of wind turbine based on wind direction prediction[D]. Beijing: North China Electric Power University, 2019. | |
15 | 刘航. 基于激光雷达的偏航控制技术研究[D]. 杭州: 浙江大学, 2019. |
LIU H. Research on yaw control technology based on lidar[D]. Hangzhou: Zhejiang University, 2019. | |
16 | 沈小军, 杜万里. 大型风力发电机组偏航系统控制策略研究现状及展望[J]. 电工技术学报, 2015, 30 (5): 196- 203. |
SHEN X J , DU W L . Expectation and review of control strategy of large wind turbines yaw system[J]. Transactions of China Electrotechnical Society, 2015, 30 (5): 196- 203. | |
17 | 邹强, 刘波峰, 彭镭, 等. 爬山算法在风力发电机组偏航控制系统中的应用[J]. 电网技术, 2010, 34 (5): 72- 76. |
ZOU Q , LIU B F , PENG L , et al. Application of hill-climbing control algorithm in yaw control system for wind power generation sets[J]. Power System Technology, 2010, 34 (5): 72- 76. | |
18 |
朴海国, 王志新. 风电机组偏航控制系统的新型算法: V-HC研究[J]. 太阳能学报, 2008, 29 (8): 1028- 1033.
DOI |
PIAO H G , WANG Z X . A new control algorithm for yaw control system of wind turbine[J]. Acta Energiae Solaris Sinica, 2008, 29 (8): 1028- 1033.
DOI |
|
19 |
顾露香, 乐秀墦, 杨虞琨, 等. KHC算法在风力发电机组偏航系统的运用[J]. 华电技术, 2011, 33 (9): 92- 94.
DOI |
GU L X , LE X F , YANG Y K , et al. Application of KHC algorithm in yaw system of wind turbine[J]. Huandian Technology, 2011, 33 (9): 92- 94.
DOI |
|
20 | 刘超, 王世荣. 基于KHC算法的风力发电机组偏航控制系统[J]. 电子技术与软件工程, 2017, (15): 237- 237. |
LIU C , WAGN S R . The yaw control system of wind turbine based on KHC algorithm[J]. Electronic Technology & Software Engineering, 2017, (15): 237- 237. | |
21 |
朴海国, 王志新. 基于CPSO的PID神经网络及偏航电机控制策略[J]. 电机与控制学报, 2010, 14 (9): 55- 62.
DOI |
PIAO H G , WANG Z X . Control strategy of CPSO-based PID neural network and a yaw motor[J]. Electric Machines and Control, 2010, 14 (9): 55- 62.
DOI |
|
22 |
宋建军, 张扬, 张长安, 等. 基于模糊控制的风力发电机组偏航系统研究[J]. 电网与清洁能源, 2011, 27 (7): 78- 81.
DOI |
SONG J J , ZHANG Y , ZHANG C A , et al. Research on the yaw system of wind turbines based on fuzzy control[J]. Power System and Clean Energy, 2011, 27 (7): 78- 81.
DOI |
|
23 |
杨茂, 杨春霖. 考虑风向的风电功率预测不确定性研究[J]. 东北电力大学学报, 2018, 38 (5): 9- 15.
DOI |
YANG M , YANG C L . Uncertainty research of wind power prediction considering wind direction[J]. Journal of Northeast Electric Power University, 2018, 38 (5): 9- 15.
DOI |
|
24 | 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39 (15): 4459- 4467. |
TANG Z H , ZHAO G N , CAO S X , et al. Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39 (15): 4459- 4467. | |
25 | SONG D , YANG J , YAO L , et al. Wind direction prediction for yaw control of wind turbines[J]. International Journal of Control Automation & Systems, 2017, 15 (4): 1720- 1728. |
26 |
SONG D , YANG J , FAN X , et al. Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions[J]. Energy Conversion and Management, 2018, 157, 587- 599.
DOI |
27 |
WAN S , CHENG L , SHENG X . Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model[J]. Energies, 2015, 8 (7): 6286- 6301.
DOI |
28 | OUYANG T , KUSIAK A , HE Y . Predictive model of yaw error in a wind turbine[J]. Energy, 2017, 123 (15): 119- 130. |
29 |
许炳坤. 基于聚类算法和风向预测的风机偏航控制优化策略[J]. 国网技术学院学报, 2017, 20 (1): 50- 54.
DOI |
XU B K . Fan yaw control optimization strategy based on clustering algorithm and wind direction prediction[J]. Journal of State Grid Technology College, 2017, 20 (1): 50- 54.
DOI |
|
30 | CASTELLANI F , SDRINGOLA P , ASTOLFI D . Analysis of wind turbine wakes through time-resolved and SCADA data of an onshore wind farm[J]. Journal of Solar Energy Engineering, 2018, 140 (4): 485- 501. |
31 |
MITTELMEIER N , KÜHN M . Determination of optimal wind turbine alignment into the wind and detection of alignment changes with SCADA data[J]. Wind Energy Science, 2018, 3, 395- 408.
DOI |
32 |
ZHANG L , LI Q , GUO Y , et al. An investigation of wind direction and speed in a featured wind farm using joint probability distribution methods[J]. Sustainability, 2018, 10, 4338.
DOI |
33 | AHMAD T , BASIT A , AHSAN M . Implementation and analyses of yaw based coordinated control of wind farms[J]. Energies, 2019, 12 (7): 15- 20. |
34 | DAR Z , KAR K , SAHNI O , et al. Wind farm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (1): 983- 995. |
35 | 焦鑫, 陈为国, 张宇, 等. 风力发电机自适应偏航控制策略研究[J]. 自动化技术与应用, 2019, 38 (3): 11- 15. |
JIAO X , CHEN W G , ZHANG Y , et al. Research on adaptive yaw control strategy for wind power generator[J]. Techniques of Automation and Applications, 2019, 38 (3): 11- 15. | |
36 | 高峰, 凌新梅, 刘强. 基于SCADA数据的风电机组偏航控制参数优化[J]. 太阳能学报, 2019, 40 (6): 1739- 1746. |
GAO F , LING X M , LIU Q . Parameter optimization of yaw control for wind turbine based on SCADA data[J]. Acta Energiae Solaris Sinica, 2019, 40 (6): 1739- 1746. | |
37 | MCKAY P , CARRIVEAU R , TING D S K . Wake impacts on downstream wind turbine performance and yaw alignment[J]. Wind Energy, 2012, 16 (2): 221- 234. |
38 |
SONG D , FAN X , YANG J , et al. Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method[J]. Applied Energy, 2018, 224, 267- 279.
DOI |
39 |
DAI C , YANG X , HU W , et al. Effect investigation of yaw on wind turbine performance based on SCADA data[J]. Energy, 2018, 149, 684- 696.
DOI |
40 |
SAENZ A A , ZULUETA E , FERNANDEZ G U , et al. Artificial neural network based reinforcement learning for wind turbine yaw control[J]. Energies, 2019, 12 (3): 436- 440.
DOI |
41 |
WEN B , TIAN X , DONG X , et al. A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions[J]. Energy, 2019, 168, 1138- 1156.
DOI |
42 |
LIAO C , SHI K , ZHAO X . Predicting the extreme loads in power production of large wind turbines using an improved PSO algorithm[J]. Applied Sciences, 2019, 9 (3): 521.
DOI |
43 | 王欣, 吴根勇, 潘东浩, 等. 基于运行数据的风电机组偏航优化控制方法研究[J]. 可再生能源, 2016, 34 (3): 413- 420. |
WANG X , WU G Y , PAN D H , et al. Wind turbine yaw control optimization utilizing the running data[J]. Renewable Energy Resources, 2016, 34 (3): 413- 420. | |
44 |
KHEIRABADI A C , NAGAMUNE R . A quantitative review of wind farm control with the objective of wind farm power maximization[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 192, 45- 73.
DOI |
45 | 吴亚联, 郭潇潇, 苏永新, 等. 机组间偏航和有功功率综合协调的海上风电场增效方法[J]. 电力系统自动化, 2017, 41 (7): 74- 80. |
WU Y L , GUO X X , SU Y X , et al. Effective optimization method for offshore wind farm considering comprehensive coordination of yaw and active power among wind turbines[J]. Automation of Electric Power Systems, 2017, 41 (7): 74- 80. | |
46 | MAJID B , FERNANDO P . Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of Renewable & Sustainable Energy, 2019, 11 (2): 023301. |
47 |
KUO J , PAN K , LI N , et al. Wind farm yaw optimization via random search algorithm[J]. Energies, 2020, 13 (4): 865.
DOI |
48 | 范强, 文贤馗, 林呈辉, 等. 大数据技术在风电领域应用研究[J]. 电力大数据, 2017, 20 (9): 55- 58. |
FAN Q , WEN X K , LIN C H , et al. Application and research of big data technology in wind power field[J]. Power Systems and Big Data, 2017, 20 (9): 55- 58. | |
49 |
万德超, 孙树敏, 尹文泉. 基于运行数据的风电场并网特性评价研究[J]. 电网与清洁能源, 2019, 35 (1): 78- 83.
DOI |
WAN D C , SUN S M , YIN W Q . Research on characteristics evaluation of grid-connected wind farm based on operation data[J]. Power System and Clean Energy, 2019, 35 (1): 78- 83.
DOI |
|
50 |
MALIK H . Wavelet and Hilbert Huang transform based wind turbine imbalance fault classification model using k-nearest neighbour algorithm[J]. International Journal of Renewable Energy Technology, 2018, 9 (1/2): 66- 83.
DOI |
51 | MCKAY P M , CARRIVEAU R , TING D S K , et al. Global sensitivity analysis of wind turbine power output[J]. Wind Energy, 2014, 17 (7): 104- 116. |
52 | 高鑫. 风电机组振动数据分析与偏航校正[J]. 热能动力工程, 2019, 34 (6): 172- 177. |
GAO X . Wind turbine vibration data analysis and yaw correction[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34 (6): 172- 177. |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN. Research on Dynamic Characteristics of Monopile Offshore Wind Turbine Tower Under Different Wind Speed Conditions [J]. Power Generation Technology, 2024, 45(2): 312-322. |
[3] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[4] | Zhipeng QIN, Gaosheng WEI, Liu CUI, Xiaoze DU. Study on Aerodynamic Performance of Wind Turbine Airfoil With Combined S-Slot and Trailing Edge Flap Control [J]. Power Generation Technology, 2024, 45(1): 24-31. |
[5] | Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis [J]. Power Generation Technology, 2023, 44(6): 824-832. |
[6] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[7] | Xin TANG, Yiran QIAN, Huawei FANG, Yang LI, Siguang LI, Jingwei YI, Weixiong CHEN, Junjie YAN. A Review of Control Strategies for Supercritical Carbon Dioxide Brayton Cycle [J]. Power Generation Technology, 2023, 44(4): 492-501. |
[8] | Jianlin LI, Ziyang DING, Haitao LIU, Hang YANG. Research on Grid-Forming Energy Storage Converters and Control Strategies [J]. Power Generation Technology, 2022, 43(5): 679-686. |
[9] | Ang FAN, Luping LI, Shihai ZHANG, Minnan OUYANG, Xiankui WEN, Shangnian CHEN. A Review on Dynamic Characteristics and Life Loss of Large Wind Turbine Towers [J]. Power Generation Technology, 2022, 43(3): 421-430. |
[10] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
[11] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[12] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[13] | Zhiwei ZHANG, Jianping ZHANG, Ming LIU, Haipeng JI, Haojun ZHU, Shengdi ZHOU. Analysis on Variation Characteristics of Offshore Wind Resources in Luchao Port [J]. Power Generation Technology, 2022, 43(2): 260-267. |
[14] | Zhou YANG, Renxin YANG, Gang SHI, Jianwen ZHANG. A Novel Control Strategy for AC Fault Ride Through in Multi-terminal DC System [J]. Power Generation Technology, 2022, 43(2): 268-277. |
[15] | Zishang LI, Renhan ZHU, Zhen DU. Analysis on the Optimization Technology of Precise Ammonia Injection in SCR Denitration System [J]. Power Generation Technology, 2021, 42(5): 630-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||