Power Generation Technology ›› 2022, Vol. 43 ›› Issue (5): 679-686.DOI: 10.12096/j.2096-4528.pgt.22132
• New Energy Storage System • Next Articles
Jianlin LI1, Ziyang DING1, Haitao LIU2, Hang YANG3
Received:
2022-08-26
Published:
2022-10-31
Online:
2022-11-04
Supported by:
CLC Number:
Jianlin LI, Ziyang DING, Haitao LIU, Hang YANG. Research on Grid-Forming Energy Storage Converters and Control Strategies[J]. Power Generation Technology, 2022, 43(5): 679-686.
工作模式 | 开关管T1状态 | 开关管T2状态 | 电压 | 子模块状态 |
---|---|---|---|---|
1 | 导通 | 关断 | 充电 | |
2 | 导通 | 关断 | 放电 | |
3 | 关断 | 导通 | 0 | 切除 |
4 | 关断 | 导通 | 0 | 切除 |
Tab. 1 Comparison of different working modes in MMC
工作模式 | 开关管T1状态 | 开关管T2状态 | 电压 | 子模块状态 |
---|---|---|---|---|
1 | 导通 | 关断 | 充电 | |
2 | 导通 | 关断 | 放电 | |
3 | 关断 | 导通 | 0 | 切除 |
4 | 关断 | 导通 | 0 | 切除 |
类型 | 开关管数量 | 体积和重量 | 适用电压等级 | 控制难度 | 成本 | 注释 |
---|---|---|---|---|---|---|
单级式储能PCS | 较少 | 较小 | 较低 | 较易 | 较低 | 容量配置缺乏一定灵活性,难以适用于较高电压等级的储能系统 |
双级式储能PCS | 较少 | 较小 | 较低 | 较易 | 较低 | 容量配置相较于单级式拓扑更为灵活,但能量损耗增加 |
三电平储能PCS | 中等 | 中等 | 中等 | 较易 | 中等 | 相较于单双级式拓扑,能输出更高的电平,有效提高变换器并网电流质量 |
级联型储能PCS | 较多 | 较大 | 较高 | 较难 | 较高 | 有效规避了大规模储能电池的串联,系统中每个模块可以独立工作且互不影响 |
MMC储能PCS | 较多 | 较大 | 较高 | 较难 | 较高 | MMC存在公共的直流母线,可大大减小储能单元中的纹波电流 |
Tab.2 Comparison of PCS energy storage
类型 | 开关管数量 | 体积和重量 | 适用电压等级 | 控制难度 | 成本 | 注释 |
---|---|---|---|---|---|---|
单级式储能PCS | 较少 | 较小 | 较低 | 较易 | 较低 | 容量配置缺乏一定灵活性,难以适用于较高电压等级的储能系统 |
双级式储能PCS | 较少 | 较小 | 较低 | 较易 | 较低 | 容量配置相较于单级式拓扑更为灵活,但能量损耗增加 |
三电平储能PCS | 中等 | 中等 | 中等 | 较易 | 中等 | 相较于单双级式拓扑,能输出更高的电平,有效提高变换器并网电流质量 |
级联型储能PCS | 较多 | 较大 | 较高 | 较难 | 较高 | 有效规避了大规模储能电池的串联,系统中每个模块可以独立工作且互不影响 |
MMC储能PCS | 较多 | 较大 | 较高 | 较难 | 较高 | MMC存在公共的直流母线,可大大减小储能单元中的纹波电流 |
1 | 马凌怡,肖珩,李雅欣,等 .电化学储能双级式PCS对比分析[J].电气应用,2022,41(3):15-21. |
MA L Y, XIAO H, LI Y X,et al .Comparative analysis of two-stage PCS for electrochemical energy storage[J].Electrical Application, 2022,41(3):15-21. | |
2 | 陈亚爱,洪忆南,周京华,等 .级联型储能功率变换系统控制策略综述[J].电气传动,2021,51(7):3-11. doi:10.19457/j.1001-2095.dqcd20915 |
CHEN Y A, HONG Y N, ZHOU J H,et al .Overview of control strategy of cascaded energy storage power conversion system[J].Electrical Transmission,2021,51(7):3-11. doi:10.19457/j.1001-2095.dqcd20915 | |
3 | 许诘翊,刘威,刘树,等 .电力系统变流器构网控制技术的现状与发展趋势[J].电网技术,2022,46(9):3586-3595. |
XU Q Y, LIU W, LIU S,et al .Current situation and development trend of power system converter network control technology[J].Power Grid Technology,2022,46(9):3586-3595. | |
4 | CATALIN A, TAOUBA J, FLORIAN D .Grid-forming control for power converters based on matching of synchronous machines[J].Automatica,2018,95:1-13. doi:10.1016/j.automatica.2018.05.037 |
5 | 李建林,朱颖,胡书举,等 .风力发电系统中大功率变流器的应用[J].高电压技术,2009,34(1):169-175. |
LI J L, ZHU Y, HU S J,et al .Application of high-power converter in wind power generation system[J].High Voltage Technology,2009,34(1):169-175. | |
6 | 李建林,樊辉,徐少华 .大容量级联式电池储能功率调节系统中多脉冲驱动技术研究[J].高电压技术,2015,41(7):2121-2126. doi:10.13336/j.1003-6520.hve.2015.07.001 |
LI J L, FAN H, XU S H .Research on multi-pulse drive technology in large-capacity cascaded battery energy storage power regulation system[J].High Voltage Technology,2015,41(7):2121-2124. doi:10.13336/j.1003-6520.hve.2015.07.001 | |
7 | 彭志强,卜强生,袁宇波,等 .电网侧储能电站监控系统体系架构及关键技术[J].电力系统保护与控制,2020,48(10):61-70. doi:10.19783/j.cnki.pspc.190807 |
PENG Z Q, BU Q S, YUAN Y B,et al .Architecture and key technologies of a monitoring and control system for an energy storage power station[J].Power System Protection and Control,2020,48(10):61-70. doi:10.19783/j.cnki.pspc.190807 | |
8 | 李建林,马会萌,袁晓冬,等 .规模化分布式储能的关键应用技术研究综述[J].电网技术,2017,41(10):3365-3375. doi:10.16628/j.cnki.2095-8188.2017.13.001 |
LI J L, MA H M, YUAN X D,et al .Review of key application technologies of large-scale distributed energy storage[J].Power Grid Technology,2017,41(10):3365-3375. doi:10.16628/j.cnki.2095-8188.2017.13.001 | |
9 | 陈晓光,杨秀媛,卜思齐,等 .考虑经济功能性的风电场储能系统容量配置[J].发电技术, 2022,43(2):341-352. doi:10.12096/j.2096-4528.pgt.21073 |
CHEN X G, YANG X Y, BU S Q,et al .Capacity allocation of wind farm energy storage system considering economic function[J].Power Generation Technology,2022,43(2):341-352. doi:10.12096/j.2096-4528.pgt.21073 | |
10 | 李靖,王志和,倪浩 .基于改进下垂控制的直流微网运行研究[J].发电技术,2021,42(6):765-774. doi:10.12096/j.2096-4528.pgt.21003 |
LI J, WANG Z H, NI H .Research on DC microgrid operation based on improved droop control[J].Power Generation Technology,2021,42(6):765-774. doi:10.12096/j.2096-4528.pgt.21003 | |
11 | 杨继鑫,王久和,王勉,等 .基于无源控制的光储直流微网虚拟惯性控制策略研究[J].发电技术,2021,42(5): 576-584. doi:10.12096/j.2096-4528.pgt.20080 |
YANG J X, WANG J H, WANG M,et al .Research on virtual inertial control strategy of DC microgrid with photovoltaic and storage system based on passivity-based control[J].Power Generation Technology,2021,42(5): 576-584. doi:10.12096/j.2096-4528.pgt.20080 | |
12 | 黄思林,肖华宾,黄常抒,等 .高压级联式储能系统在火储联合调频中的应用及实践[J/OL].储能科学与技术:1-13[2022-07-22].DOI:10.19799/j.cnki.2095-4239.2022.0241. |
HUANG S L, XIAO H B, HUANG C S,et al .Application and practice of high-voltage cascade energy storage system in combined frequency modulation of fire storage[J/OL].Energy Storage Science and Technology:1-13[2022-07-22].DOI:10.19799/j.cnki.2095-4239.2022.0241. | |
13 | 徐政,肖晃庆,张哲任 .模块化多电平换流器主回路参数设计[J].高电压技术,2015,41(8):2514-2527. |
XU Z, XIAO H Q, ZHANG Z R .Design of main circuit parameters of modular multilevel converter[J].High Voltage Technology,2015,41(8):2514-2527. | |
14 | 罗朝旭,刘洋,罗钦,等 .基于动态下垂系数的低压微电网无功控制策略[J].电力建设,2022,43(1):78-86. doi:10.12204/j.issn.1000-7229.2022.01.009 |
LUO Z X, LIU Y, LUO Q,et al .Reactive power control strategy of low-voltage microgrid applying dynamic droop coefficient[J].Electric Power Construction,2022,43(1):78-86. doi:10.12204/j.issn.1000-7229.2022.01.009 | |
15 | 王素娥,吴永斌,熊连松,等 .基于功频下垂控制的光伏并网发电系统惯量阻尼机理研究[J].智慧电力,2020,48(12):20-25. doi:10.3969/j.issn.1673-7598.2020.12.005 |
WANG S E, WU Y B, XIONG L S,et al .Research on inertia and damping mechanism of grid-tied photovoltaic power generation system based on power frequency droop control[J].Smart Power,2020,48(12):20-25. doi:10.3969/j.issn.1673-7598.2020.12.005 | |
16 | 许建中,李承昱,熊岩,等 .模块化多电平换流器高效建模方法研究综述[J].中国电机工程学报,2015,35(13):3381-3392. doi:10.13334/j.0258-8013.pcsee.2015.13.023 |
XU J Z, LI C Y, XIONG Y,et al .Review of high-efficiency modeling methods for modular multilevel converters[J].Journal of CSEE,2015,35(13):3381-3392. doi:10.13334/j.0258-8013.pcsee.2015.13.023 | |
17 | 周京华,汪凡,籍祥,等 .级联型H桥储能功率变换系统关键控制策略综述[J].电器与能效管理技术,2018(1):8-17. |
ZHOU J H, WANG F, JI X,et al .Summary of key control strategies of cascaded H-bridge energy storage power conversion system[J].Electrical Appliance and Energy Efficiency Management Technology,2018(1):8-17. | |
18 | 张颖,李崇坚,朱春毅,等 .三电平H桥级联型逆变器[J].电工技术学报,2011,26(5):78-82. |
ZHANG Y, LI C J, ZHU C Y,et al .Three-level H-bridge cascaded inverter[J].Journal of Electrical Technology,2011,26(5):78-82. |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Jie YANG, Zhe SUN, Xinyi SU, Gang LU, Bo YUAN. A Wireless Multi-Objective Power Sharing Method for Energy Storage System in DC Micro-Grid Considering Oscillatory-Type Power [J]. Power Generation Technology, 2024, 45(2): 341-352. |
[3] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[4] | Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply [J]. Power Generation Technology, 2023, 44(4): 443-451. |
[5] | Xin TANG, Yiran QIAN, Huawei FANG, Yang LI, Siguang LI, Jingwei YI, Weixiong CHEN, Junjie YAN. A Review of Control Strategies for Supercritical Carbon Dioxide Brayton Cycle [J]. Power Generation Technology, 2023, 44(4): 492-501. |
[6] | Jiangwu DU, Xiaoqiang TANG, Zhiwei LUO, Dunnan LIU, Jixu CHEN, Erfeng XU, Sheng BI. Pricing Method for Season of Use in Integrated Energy Park [J]. Power Generation Technology, 2023, 44(2): 261-269. |
[7] | Xin YIN, Feng ZHANG, Balati ADILI, Xiqiang CHANG, Wuhui CHEN, Changjun LI, Xueming LI, Shaowei YUAN. Study on Participation of Electricity-driven Thermal Load in Real-time Scheduling of New Power System [J]. Power Generation Technology, 2023, 44(1): 115-124. |
[8] | Chen DONG, Qiang WU, He HUANG, Rui ZHANG, Xiuyuan YANG. Power Grid Topology Identification Based on Immune Algorithm [J]. Power Generation Technology, 2023, 44(1): 125-135. |
[9] | Qian GAO, Junyi YANG, Yu HONG, Xiaolei SUN, Qianjin ZHU, Tian YU, Xin WANG, Linyuan WANG, Zesen LI. Research on Digital Transformation Architecture and Path of Power Grid Development Planning Business Under New Power System Blueprint [J]. Power Generation Technology, 2022, 43(6): 851-859. |
[10] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[11] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[12] | Wankai YANG, Xingguo WANG, Shuyang WANG. Analysis of High Frequency Resonance and Suppression in Yu to E VSC-HVDC Project Connected to Power Grid [J]. Power Generation Technology, 2022, 43(3): 492-500. |
[13] | Zhou YANG, Renxin YANG, Gang SHI, Jianwen ZHANG. A Novel Control Strategy for AC Fault Ride Through in Multi-terminal DC System [J]. Power Generation Technology, 2022, 43(2): 268-277. |
[14] | Bowen ZHOU, Chao XI, Guangdi LI, Bo YANG. Metaverse Application in Power Systems [J]. Power Generation Technology, 2022, 43(1): 1-9. |
[15] | Haichuan ZHAO, Shuhui JIN, Huan WANG, Shipeng YU, Ru BAI, Zuoxia XING. Study on Maximum Power Tracking Strategy of 10 MW Medium Voltage Six-Phase Direct-Drive Permanent Magnet Wind Turbine [J]. Power Generation Technology, 2022, 43(1): 102-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||