Power Generation Technology ›› 2023, Vol. 44 ›› Issue (6): 824-832.DOI: 10.12096/j.2096-4528.pgt.22178
• Power Generation and Environmental Protection • Previous Articles Next Articles
Zhan LIU1, Yanyang BAO2, Dazi LI2
Received:
2023-03-29
Published:
2023-12-31
Online:
2023-12-28
Contact:
Dazi LI
Supported by:
CLC Number:
Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis[J]. Power Generation Technology, 2023, 44(6): 824-832.
类别 | 测试样本 | 分类准确率/% |
---|---|---|
发电机驱动端 | 50 | 100 |
发电机非驱动端 | 50 | 98 |
Tab. 1 Fault diagnosis results of wind turbine generator at the same speed
类别 | 测试样本 | 分类准确率/% |
---|---|---|
发电机驱动端 | 50 | 100 |
发电机非驱动端 | 50 | 98 |
类别 | 测试样本 | 分类准确率/% |
---|---|---|
发电机驱动端 | 50 | 98 |
发电机非驱动端 | 50 | 96 |
Tab. 2 Fault diagnosis results of fan generators at different rotational speeds
类别 | 测试样本 | 分类准确率/% |
---|---|---|
发电机驱动端 | 50 | 98 |
发电机非驱动端 | 50 | 96 |
风机编号 | 训练集 | 测试集 | ||||||
---|---|---|---|---|---|---|---|---|
第1组 | 第2组 | 第3组 | 第4组 | 第1组 | 第2组 | 第3组 | 第4组 | |
01 | 0.956 | 0.942 | 0.998 | 0.985 | 0.956 | 0.948 | 0.984 | 0.976 |
02 | 0.957 | 0.949 | 0.997 | 0.987 | 0.949 | 0.943 | 0.988 | 0.975 |
03 | 0.957 | 0.937 | 0.998 | 0.992 | 0.956 | 0.941 | 0.989 | 0.978 |
04 | 0.952 | 0.938 | 0.998 | 0.989 | 0.956 | 0.945 | 0.983 | 0.973 |
05 | 0.954 | 0.951 | 0.996 | 0.986 | 0.965 | 0.941 | 0.984 | 0.974 |
06 | 0.968 | 0.949 | 0.998 | 0.983 | 0.957 | 0.938 | 0.987 | 0.972 |
07 | 0.953 | 0.943 | 0.996 | 0.987 | 0.954 | 0.946 | 0.985 | 0.974 |
08 | 0.959 | 0.942 | 0.998 | 0.985 | 0.955 | 0.942 | 0.982 | 0.975 |
09 | 0.951 | 0.945 | 0.997 | 0.988 | 0.953 | 0.943 | 0.986 | 0.968 |
10 | 0.957 | 0.943 | 0.997 | 0.990 | 0.955 | 0.943 | 0.984 | 0.973 |
Tab. 3 Results of ablation experiment
风机编号 | 训练集 | 测试集 | ||||||
---|---|---|---|---|---|---|---|---|
第1组 | 第2组 | 第3组 | 第4组 | 第1组 | 第2组 | 第3组 | 第4组 | |
01 | 0.956 | 0.942 | 0.998 | 0.985 | 0.956 | 0.948 | 0.984 | 0.976 |
02 | 0.957 | 0.949 | 0.997 | 0.987 | 0.949 | 0.943 | 0.988 | 0.975 |
03 | 0.957 | 0.937 | 0.998 | 0.992 | 0.956 | 0.941 | 0.989 | 0.978 |
04 | 0.952 | 0.938 | 0.998 | 0.989 | 0.956 | 0.945 | 0.983 | 0.973 |
05 | 0.954 | 0.951 | 0.996 | 0.986 | 0.965 | 0.941 | 0.984 | 0.974 |
06 | 0.968 | 0.949 | 0.998 | 0.983 | 0.957 | 0.938 | 0.987 | 0.972 |
07 | 0.953 | 0.943 | 0.996 | 0.987 | 0.954 | 0.946 | 0.985 | 0.974 |
08 | 0.959 | 0.942 | 0.998 | 0.985 | 0.955 | 0.942 | 0.982 | 0.975 |
09 | 0.951 | 0.945 | 0.997 | 0.988 | 0.953 | 0.943 | 0.986 | 0.968 |
10 | 0.957 | 0.943 | 0.997 | 0.990 | 0.955 | 0.943 | 0.984 | 0.973 |
1 | AWADALLAH M A, VENKATESH B .Energy storage in distribution system planning and operation:current status and outstanding challenges[J].Canadian Journal of Electrical and Computer Engineering,2019,42(1):10-19. doi:10.1109/cjece.2018.2878321 |
2 | 辛保安,单葆国,李琼慧,等 .“双碳”目标下“能源三要素”再思考[J].中国电机工程学报,2022,42(9):3117-3125. |
XIN B A, SHAN B G, LI Q H,et al .Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J].Proceedings of the CSEE,2022,42(9):3117-3125. | |
3 | 董文博,顾秀芳,陈艳宁 .风电并网价值分析[J].发电技术,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 |
DONG W B, GU X F, CHEN Y N .Value analysis of wind power integration[J].Power Generation Technology,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 | |
4 | 中丹可再生能源发展项目管理办公室 .中国可再生能源发展路线图 2050[EB/OL].(2014-12-16) [2022-11-15]. |
089 | Zhongdan Renewable Energy Development Project Management Office .China’s roadmap for renewable energy development 2050[EB\OL].(2014-12-16)[2022-11-15].. doi:10.1023/a:1010650624155 |
c3d5bbfd0a79563c1ec4dad77e.html?_wkts_=16914621. doi:10.1023/a:1010650624155 | |
84089. doi:10.1023/a:1010650624155 | |
5 | 刘展 .MW级变速变桨风力发电机组系统振动故障诊断技术与减振降载方法研究[D].北京:北京交通大学,2019. |
LIU Z .Study on vibration fault diagnosis technology and vibration reduction and load reduction method of MW variable speed variable pitch wind turbine system[D].Beijing:Beijing Jiaotong University,2019. | |
6 | 李亚光,李蒙 .基于深度小世界神经网络的风电机组异常检测[J].发电技术,2021,42(3):313-321. doi:10.12096/j.2096-4528.pgt.20091 |
LI Y G, LI M .Anomaly detection of wind turbines based on deep small-world neural network[J].Power Generation Technology,2021,42(3):313-321. doi:10.12096/j.2096-4528.pgt.20091 | |
7 | 马海飞,滕伟,彭迪康,等 .基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J].中国电力,2023,56(10):71-79. |
MA H F, TENG W, PENG D K,et al .Compound fault feature extraction of wind power gearbox based on DRS and improved autogram[J].Electric Power,2023,56(10):71-79. | |
8 | 康佳乐,余浩,段瑶,等 .风电场次同步振荡等值建模方法研究[J].发电技术,2022,43(6):880-891. doi:10.12096/j.2096-4528.pgt.21121 |
KANG J L, YU H, DUAN Y,et al .Equivalent modeling method of sub-synchronous oscillation in wind farm[J].Power Generation Technology,2022,43(6):880-891. doi:10.12096/j.2096-4528.pgt.21121 | |
9 | 周超,朱熀秋,魏杰,等 .我国风力发电发展现状和问题分析[J].能源研究与信息,2012,28(2):69-75. doi:10.3969/j.issn.1008-8857.2012.02.004 |
ZHOU C, ZHU H Q, WEI J,et al .Status quo and problems analysis of wind power generation in China[J].Energy Research and Information,2012, 28(2):69-75. doi:10.3969/j.issn.1008-8857.2012.02.004 | |
10 | 杨晓峰,方逸航,赵鹏臻,等 .风电机组状态识别的非机理性建模方法[J/OL].中国电力:1-9[2022-08-29].. |
YANG X F, FANG Y H, ZHAO P Z,et al .Non-mechanical modeling method for state identification of wind turbines[J/OL].Electric Power:1-9[2023-08-29].. | |
11 | QIAO W, LU D G .A wurvey on wind turbine condition monitoring and fault diagnosis-part I:components and subsystems[J].IEEE Transactions on Industrial Electronics,2015,62(10):6536-6545. doi:10.1109/tie.2015.2422112 |
12 | LI Z G, YAN B J .Fault diagnosis of hoist gearbox based on time-domain analysis of EMD and fuzzy clustering[J].Advanced Materials Research,2011,328/330:1717-1720. doi:10.4028/www.scientific.net/amr.328-330.1717 |
13 | ZHANG Z, WANG Y, WANG K .Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis,and artificial neural networks[J].The International Journal of Advanced Manufacturing Technology,2013,68(1/2/3/4):763-773. doi:10.1007/s00170-013-4797-0 |
14 | LI J M, CHEN X F, DU Z H,et al .A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis[J].Renewable Energy,2013,60:7-19. doi:10.1016/j.renene.2013.04.005 |
15 | CHEN J L, PAN J, LI Z P,et al .Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals[J].Renewable Energy,2016,89:80-92. doi:10.1016/j.renene.2015.12.010 |
16 | HUSSAIN H S .A review of artificial intelligence techniques in image steganography domain[J].Journal of Engineering Science and Technology,2017,12(1):1835-1845. |
17 | LONG X F, YANG P, GUO H X,et al .A CBA-KELM-based recognition method for fault diagnosis of wind turbines with time-domain analysis and multisensor data fusion[J].Shock and Vibration,2019(13):1-14. doi:10.1155/2019/7490750 |
18 | HU W F, CHANG H, GU X S .A novel fault diagnosis technique for wind turbine gearbox[J].Applied Soft Computing,2019,82:1-11. doi:10.1016/j.asoc.2019.105556 |
19 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E .Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. doi:10.1145/3065386 |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN. Research on Dynamic Characteristics of Monopile Offshore Wind Turbine Tower Under Different Wind Speed Conditions [J]. Power Generation Technology, 2024, 45(2): 312-322. |
[3] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[4] | Zhipeng QIN, Gaosheng WEI, Liu CUI, Xiaoze DU. Study on Aerodynamic Performance of Wind Turbine Airfoil With Combined S-Slot and Trailing Edge Flap Control [J]. Power Generation Technology, 2024, 45(1): 24-31. |
[5] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[6] | Lifeng ZHANG, Jing LI, Zhi WANG. Reconstruction of Temperature Distribution by Acoustic Tomography Based on Principal Component Analysis and Deep Neural Network [J]. Power Generation Technology, 2023, 44(3): 399-406. |
[7] | Ang FAN, Luping LI, Shihai ZHANG, Minnan OUYANG, Xiankui WEN, Shangnian CHEN. A Review on Dynamic Characteristics and Life Loss of Large Wind Turbine Towers [J]. Power Generation Technology, 2022, 43(3): 421-430. |
[8] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
[9] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[10] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[11] | Zhiwei ZHANG, Jianping ZHANG, Ming LIU, Haipeng JI, Haojun ZHU, Shengdi ZHOU. Analysis on Variation Characteristics of Offshore Wind Resources in Luchao Port [J]. Power Generation Technology, 2022, 43(2): 260-267. |
[12] | Lei ZHANG, Jiying LI, Qinwei LI, Mince ZHANG, Yunfeng GUO, Lidong ZHANG. Status and Prospect of Yaw System Control Strategy for Wind Turbines [J]. Power Generation Technology, 2021, 42(3): 306-312. |
[13] | Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network [J]. Power Generation Technology, 2021, 42(3): 313-321. |
[14] | Haichuan ZHAO, Yandong LU, Haokang ZHENG, Zuoxia XING. Research on Low Voltage Ride Through for Small Direct-driven Permanent Magnet Wind Turbine in Low Voltage Microgrid [J]. Power Generation Technology, 2020, 41(6): 659-666. |
[15] | Changxing YANG, Luping LI. Research Progress on Blade Damage Fault Detection Technology of Wind Turbine [J]. Power Generation Technology, 2020, 41(6): 599-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||