Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 312-322.DOI: 10.12096/j.2096-4528.pgt.22153
• New Energy • Previous Articles Next Articles
Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN
Received:
2023-08-20
Published:
2024-04-30
Online:
2024-04-29
Contact:
Luping LI
Supported by:
CLC Number:
Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN. Research on Dynamic Characteristics of Monopile Offshore Wind Turbine Tower Under Different Wind Speed Conditions[J]. Power Generation Technology, 2024, 45(2): 312-322.
结构名称 | 密度/(kg/m3) | 杨氏模量/GPa | 泊松比 |
---|---|---|---|
叶片 | 1 850 | 38 | 0.3 |
塔筒 | 7 850 | 210 | 0.3 |
单桩 | 7 850 | 210 | 0.3 |
Tab. 1 Structural material properties of wind turbines
结构名称 | 密度/(kg/m3) | 杨氏模量/GPa | 泊松比 |
---|---|---|---|
叶片 | 1 850 | 38 | 0.3 |
塔筒 | 7 850 | 210 | 0.3 |
单桩 | 7 850 | 210 | 0.3 |
项目 | 参数 | 数值 |
---|---|---|
基础描述 | 额定功率/MW | 5 |
切入、额定风速/( | 3、11.4 | |
额定转速/(r/min) | 12.1 | |
转子配置 | 3叶片 | |
叶片 | 转子直径/m | 126 |
轮毂高度/m | 100 | |
轮毂直径/m | 3 | |
叶片长度/m | 61.5 | |
塔筒 | 塔筒高度/m | 90 |
塔顶、塔底外径/m | 3.87、6 | |
塔顶、塔底壁厚/m | 0.027、0.054 | |
单桩 | 单桩长度/m | 75 |
单桩外径/m | 6 | |
单桩壁厚/m | 0.054 |
Tab. 2 Main parameters of NREL 5 MW mono-pile offshore wind turbine
项目 | 参数 | 数值 |
---|---|---|
基础描述 | 额定功率/MW | 5 |
切入、额定风速/( | 3、11.4 | |
额定转速/(r/min) | 12.1 | |
转子配置 | 3叶片 | |
叶片 | 转子直径/m | 126 |
轮毂高度/m | 100 | |
轮毂直径/m | 3 | |
叶片长度/m | 61.5 | |
塔筒 | 塔筒高度/m | 90 |
塔顶、塔底外径/m | 3.87、6 | |
塔顶、塔底壁厚/m | 0.027、0.054 | |
单桩 | 单桩长度/m | 75 |
单桩外径/m | 6 | |
单桩壁厚/m | 0.054 |
参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 | 工况6 |
---|---|---|---|---|---|---|
平均风速/( | 3.0 | 7.2 | 11.4 | 16.0 | 20.4 | 25.0 |
叶轮转速/(r/min) | 6.9 | 9.6 | 12.1 | 12.1 | 12.1 | 12.1 |
Tab. 3 Six simulation conditions
参数 | 工况1 | 工况2 | 工况3 | 工况4 | 工况5 | 工况6 |
---|---|---|---|---|---|---|
平均风速/( | 3.0 | 7.2 | 11.4 | 16.0 | 20.4 | 25.0 |
叶轮转速/(r/min) | 6.9 | 9.6 | 12.1 | 12.1 | 12.1 | 12.1 |
参数 | 淤泥质粉质黏土 | 粉砂 | 粉质黏土 |
---|---|---|---|
有效重度/( | 7.6 | 9.6 | 9.9 |
剪切波速/( | 110.0 | 190.0 | 210.0 |
剪切模量/MPa | 21. 7 | 70. 8 | 97. 2 |
弹性模量/MPa | 56. 4 | 184 | 252. 7 |
泊松比 | 0.3 | 0.3 | 0.3 |
Tab. 4 Measured soil quality parameters of offshore wind farms
参数 | 淤泥质粉质黏土 | 粉砂 | 粉质黏土 |
---|---|---|---|
有效重度/( | 7.6 | 9.6 | 9.9 |
剪切波速/( | 110.0 | 190.0 | 210.0 |
剪切模量/MPa | 21. 7 | 70. 8 | 97. 2 |
弹性模量/MPa | 56. 4 | 184 | 252. 7 |
泊松比 | 0.3 | 0.3 | 0.3 |
参数 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|
机组网格尺寸/mm | 1 000 | 750 | 500 | 500 |
土体网格尺寸/mm | 2 000 | 2 000 | 2 000 | 1 000 |
总单元数 | 359 320 | 408 432 | 534 033 | 2 794 423 |
总节点数 | 515 230 | 593 260 | 805 936 | 3 868 600 |
平均元素质量 | 0.824 9 | 0.803 03 | 0.851 31 | 0.878 21 |
平均Skewness值 | 0.232 54 | 0.263 09 | 0.209 1 | 0.188 38 |
Tab. 5 Meshing division scheme
参数 | 方案1 | 方案2 | 方案3 | 方案4 |
---|---|---|---|---|
机组网格尺寸/mm | 1 000 | 750 | 500 | 500 |
土体网格尺寸/mm | 2 000 | 2 000 | 2 000 | 1 000 |
总单元数 | 359 320 | 408 432 | 534 033 | 2 794 423 |
总节点数 | 515 230 | 593 260 | 805 936 | 3 868 600 |
平均元素质量 | 0.824 9 | 0.803 03 | 0.851 31 | 0.878 21 |
平均Skewness值 | 0.232 54 | 0.263 09 | 0.209 1 | 0.188 38 |
模态阶数 | 叶片静止工况/Hz | 工况1计算值/Hz | 变化率/% | 工况2计算值/Hz | 变化率/% | 工况3计算值/Hz | 变化率/% |
---|---|---|---|---|---|---|---|
一阶频率 | 0.154 92 | 0.159 51 | 2.966 | 0.163 74 | 5.697 | 0.169 28 | 9.27 |
二阶频率 | 0.158 08 | 0.162 62 | 2.869 | 0.166 67 | 5.431 | 0.172 36 | 9.03 |
三阶频率 | 0.643 33 | 0.646 74 | 0.531 | 0.648 99 | 0.880 | 0.649 57 | 0.97 |
四阶频率 | 0.735 98 | 0.740 37 | 0.597 | 0.742 10 | 0.832 | 0.743 50 | 1.02 |
五阶频率 | 0.890 43 | 0.902 10 | 1.310 | 0.911 10 | 2.321 | 0.954 75 | 7.22 |
六阶频率 | 1.364 94 | 1.410 45 | 3.334 | 1.421 00 | 4.107 | 1.437 70 | 5.33 |
Tab. 6 Modal frequency values of the tower structure under the first three simulation conditions
模态阶数 | 叶片静止工况/Hz | 工况1计算值/Hz | 变化率/% | 工况2计算值/Hz | 变化率/% | 工况3计算值/Hz | 变化率/% |
---|---|---|---|---|---|---|---|
一阶频率 | 0.154 92 | 0.159 51 | 2.966 | 0.163 74 | 5.697 | 0.169 28 | 9.27 |
二阶频率 | 0.158 08 | 0.162 62 | 2.869 | 0.166 67 | 5.431 | 0.172 36 | 9.03 |
三阶频率 | 0.643 33 | 0.646 74 | 0.531 | 0.648 99 | 0.880 | 0.649 57 | 0.97 |
四阶频率 | 0.735 98 | 0.740 37 | 0.597 | 0.742 10 | 0.832 | 0.743 50 | 1.02 |
五阶频率 | 0.890 43 | 0.902 10 | 1.310 | 0.911 10 | 2.321 | 0.954 75 | 7.22 |
六阶频率 | 1.364 94 | 1.410 45 | 3.334 | 1.421 00 | 4.107 | 1.437 70 | 5.33 |
1 | 李铮,郭小江,申旭辉,等 .我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 |
LI Z, GUO X J, SHEN X H,et al .Review on key technologies of offshore wind power development in China[J].Power Generation Technology,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 | |
2 | 胡丹梅,曾理,陈云浩 .半潜式海上风力机流固耦合特性分析[J].发电技术,2022,43(2):218-226. doi:10.12096/j.2096-4528.pgt.22026 |
HU D M, ZENG L, CHEN Y H .Analysis of fluid-structure coupling characteristics of semi-submersible offshore wind turbine[J].Power Generation Technology,2022,43(2):218-226. doi:10.12096/j.2096-4528.pgt.22026 | |
3 | 林玉鑫,张京业 .海上风电的发展现状与前景展望[J].分布式能源,2023,8(2):1-10. |
LIN Y X, ZHANG J Y .Development status and prospect of offshore wind power[J].Power Generation Technology,2023,8(2):1-10. | |
4 | 赵元星,汪建文,张立茹,等 .气动力和离心力对风力机叶片应力影响研究[J].太阳能学报,2021,42(2):225-232. |
ZHAO Y X, WANG J W, ZHANG L R,et al .Effect of aerodynamic force and centrifugal force on wind turbine blade stress[J].Journal of Solar Energy,2019,42(2):225-232. | |
5 | 胡国玉,孙文磊,金阿芳 .大型风力发电机旋转叶片结构动力特性分析[J].可再生能源,2015,33(11):1652-1657. |
HU G Y, SUN W L, JIN A F .Analysis of dynamic characteristics of rotating blade structure of large wind turbine[J].Renewable Energy,2015,33(11):1652-1657. | |
6 | 闫阳天,李春,杨阳,等 .基于VMD方法的海上风力机结构TMD抗震[J].机械工程学报,2022,58(4):155-164. doi:10.3901/jme.2022.04.155 |
YAN Y T, LI C, YANG Y,et al .TMD seismic resistance of offshore wind turbine structure based on VMD Method[J].Chinese Journal of Mechanical Engineering,2022,58(4):155-164. doi:10.3901/jme.2022.04.155 | |
7 | 杜静,杨瑞伟,李东坡,等 .MW级风电机组钢筋混凝土塔筒稳定性分析[J].太阳能学报,2021,42(3):9-14. |
DU J, YANG R W, LI D P,et al .Stability analysis of reinforced concrete tower for MW wind turbine[J].Acta Solar Energy Sinica,2021,42(3):9-14. | |
8 | MALEKI F K, BOZDOGAN K .Application of differential transformation method for free vibration analysis of wind turbine[J].Wind and Structures,2021,32(1):11-17. |
9 | 杜静,许亚能,谢双义,等 .基于TMD的风力机塔筒振动控制研究[J].太阳能学报,2021,42(2):157-162. |
DU J, XU Y N, XIE S Y,et al .Vibration control of wind turbine tower based on TMD[J].Acta Solar Energy Sinica,2021,42(2):157-162. | |
10 | MAJOR D, PALACIOS J, MAUGHMER M,et al .Aerodynamics of leading-edge protection tapes for wind turbine blades[J].Wind Engineering,2021,45(5):1296-1316. doi:10.1177/0309524x20975446 |
11 | GUSTAVO O, FILIPE M, ÁLVARO C,et al .Modal decomposition of the dynamic response of wind turbine during one year of continuous monitoring[J].Structural Control and Health Monitoring,2021,28(8). doi:10.1002/stc.2754 |
12 | 陶磊,张俊发,陈厚群 .考虑土-结构动力相互作用的冷却塔地震响应分析[J].振动与冲击,2016,35(23):80-89. doi:10.13465/j.cnki.jvs.2016.23.013 |
TAO L, ZHANG J F, CHEN H Q .Seismic response analysis of Cooling tower considering soil-structure dynamic interaction[J].Journal of Vibration and Shock,2016,35(23):80-89. doi:10.13465/j.cnki.jvs.2016.23.013 | |
13 | 柯世堂,王同光,曹九发,等 .考虑土-结相互作用大型风力发电结构风致响应分析[J].土木工程学报,2015,48(2):18-25. |
KE S T, WANG T G, CAO J F,et al .Wind-induced response analysis of large wind power generation structure considering soil-junction interaction[J].Journal of Civil Engineering,2015,48(2):18-25. | |
14 | ZUO H R, BI K M, HAO H .Dynamic analyses of operating offshore wind turbines including soil structure interaction[J].Engineering Structure,2018,157:42-62. doi:10.1016/j.engstruct.2017.12.001 |
15 | 胡天龙 .基于等效梁基础模型的海上风机基础动力响应研究[D].大连:大连理工大学,2021. |
HU T L .Research on dynamic response of offshore fan foundation based on equivalent beam foundation model[D].Dalian:Dalian University of Technology,2021. | |
16 | 李万润,丁明轩,王雪平,等 .考虑叶片旋转及土-结构相互作用对风电结构动力特性影响的研究[J].太阳能学报,2021,42(1):248-255. |
LI W R, DING M X, WANG X P, et al .Study on effects of blade rotation and soil-structure Interaction on dynamic characteristics of wind power structures[J].Journal of Solar Energy,2021,42(1):248-255. | |
17 | 薛世成,岳敏楠,闫阳天,等 .基于精确桩土模型的桁架式大型海上风力机地震动力学响应分析[J].热能动力工程,2021,36(6):143-151. |
XUE S C, YUE M N, YAN Y T,et al .Seismic dynamic response analysis of trussed large offshore wind turbine based on precise pile-soil model[J].Journal of Thermal Energy and Power Engineering,2021,36(6):143-151. | |
18 | 苏云新 .风力发电塔架的动态响应分析[D].沈阳:沈阳工业大学,2020. |
SU Y X .Dynamic response analysis of wind power tower[D].Shenyang:Shenyang University of Technology,2020. | |
19 | International Electrotechnical Commission . Wind turbines-part 3:design requirements for offshore wind turbines: [S].Switzerland: International Electrotechnical Commission,2009. |
20 | 李晓松 .大型风力发电机组塔筒载荷特性分析[D].沈阳:沈阳工业大学,2015. |
LI X S .Analysis of load characteristics of large wind turbine tower[D].Shenyang:Shenyang University of Technology,2015. | |
21 | 刘晨晨,张琪,李明广,等 .波浪与地震荷载共同作用下桩的动力响应[J].上海交通大学学报,2021,55(6):638-644. |
LIU C C, ZHANG Q, LI M G,et al .Dynamic response of piles under wave and seismic loads[J].Journal of Shanghai Jiao Tong University,2021,55(6):638-644. | |
22 | MORISON J R, O'BRIEN M P, JOHNSON J W,et al .The force exerted by surface waves on piles[J].Journal of Petroleum Technology,1950,2(5):149-154. doi:10.2118/950149-g |
23 | HOBBACHER A .Recommendations for fatigue design of welded joints and components[J].Welding Research Council Bulletin,2009(520):1-144. |
[1] | Zhonglin XIA, Wentong CHEN, Shuqiao XU, Zhongsheng WU, Qiang XIE, Shuangchen MA, Jingxiang MA. Application Status and Existing Problem Analysis of the Natural Draft Cooling Towers With Flue Gas Injection Technology in Thermal Power Plants [J]. Power Generation Technology, 2024, 45(4): 590-599. |
[2] | Haiwei JIANG, Mingming GAO, Jie LI, Haoyang YU, Guangxi YUE, Zhong HUANG. Modeling and Dynamic Characteristic Analysis of Combustion Process of Biomass Vibrating Grate Furnace [J]. Power Generation Technology, 2024, 45(2): 250-259. |
[3] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[4] | Wenbin LIU, Lulu LI, Xiaojin LI, Xuan YAO, Hairui YANG. Study on Parameter Optimization of Desulfurized Wet Flue Gas in Spray Condensation Process [J]. Power Generation Technology, 2023, 44(1): 107-114. |
[5] | Ang FAN, Luping LI, Shihai ZHANG, Minnan OUYANG, Xiankui WEN, Shangnian CHEN. A Review on Dynamic Characteristics and Life Loss of Large Wind Turbine Towers [J]. Power Generation Technology, 2022, 43(3): 421-430. |
[6] | Zhiwei ZHANG, Jianping ZHANG, Ming LIU, Haipeng JI, Haojun ZHU, Shengdi ZHOU. Analysis on Variation Characteristics of Offshore Wind Resources in Luchao Port [J]. Power Generation Technology, 2022, 43(2): 260-267. |
[7] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[8] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[9] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[10] | Zhiming WANG, Xinquan PAN, Weinan HE, Yikun TAN, Yuanbin ZHAO. Calculation of Evaporative Cooling Air Parameters and Relevant Applications in Wet Evaporative Cooing Tower Water and Energy Saving [J]. Power Generation Technology, 2021, 42(5): 604-613. |
[11] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[12] | Ying CUI, Han ZHANG, Yuxi HUANG. Dynamic Characteristics Analysis of Circumferential Rod Fastening Rotor-Bearing System Considering Contact Stiffness [J]. Power Generation Technology, 2021, 42(4): 447-453. |
[13] | Shuangping ZHANG, Weixiong CHEN, Xibu JIA, Yuan YUAN. Simulation Study on Influence of Installation Height of Mist Eliminator on Liquid Holdup of Flue Gas in Desulfurization Tower [J]. Power Generation Technology, 2021, 42(2): 247-253. |
[14] | Yichi ZHANG, Zhiqiang LI, Zhe WANG, Qinyong ZHOU, Jincheng GUO, Shan JIANG, Baoxin LI, Gang ZHAO. Comparison and Applicability of New Generation Synchronous Condenser and STATCOM Based on Characteristic Analysis in Frequency and Time Domains [J]. Power Generation Technology, 2021, 42(1): 69-77. |
[15] | Zhengling YANG, Ruxue WAGN, Jian QIAO, Xi ZHANG, Zhao YANG, Jun ZHANG. Analysis of the Influence of Atmospheric Pressure Difference on Spatial Correlation Prediction of Wind Speed [J]. Power Generation Technology, 2020, 41(6): 617-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||