1 |
IPCC .Climate change 2014 synthesis report[R].Geneva:IPCC,2015.
|
2 |
王志轩,潘荔,张建宇 .碳排放权交易培训教材[M].北京:中国环境出版集团,2022:125-126.
|
|
WANG Z X, PAN L, ZHANG J Y .Training materials for carbon emission trading[M].Beijing:China Environmental Publishing Group,2022:125-126.
|
3 |
WANG F, HARINDINTWALI J D, YUAN Z,et al .Technologies and perspectives for achieving carbon neutrality[J].Innovation (Camb),2021,2(4):100180. doi:10.1016/j.xinn.2021.100180
|
4 |
LUO S H, HU W H, LIU W,et al .Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,166:112618. doi:10.1016/j.rser.2022.112618
|
5 |
CHEN L, MSIGWA G, YANG M,et al .Strategies to achieve a carbon neutral society:a review[J].Environmental Chemistry Letters,2022,20(4):2277-2310. doi:10.1007/s10311-022-01435-8
|
6 |
陈美安,杨鹏,胡敏 .中国NDC进程及展望2021:迈向全球碳中性的未来[R].北京:绿色创新发展中心,2021.
|
|
CHEN M A, YANG P, HU M .The process and prospect of NDC in China 2021:Towards a global carbon-neutral future[R].Beijing:Green Innovation Development Center,2021.
|
7 |
杨京渝,罗隆福,阳同光,等 .计及谷时段风电消纳的储能系统平抑风电功率波动控制策略[J].电力系统保护与控制,2023,51(10):131-141.
|
|
YANG J Y, LUO L F, YANG T G,et al .Smoothing wind power fluctuation control strategy for an energy storage system considering wind power consumption in the valley period[J].Power System Protection and Control,2023,51(10):131-141.
|
8 |
吴应双,冯祥勇,王寅,等 .一种考虑新能源电站出力不确定性的采样鲁棒无功优化方法[J].电力科学与技术学报,2023,38(2):84-95.
|
|
WU Y S, FENG X Y, WANG Y,et al .A sample robust reactive power optimization approach considering the power output uncertainty of renewable energy stations[J].Journal of Electric Power Science and Technology,2023,38(2):84-95.
|
9 |
杨京渝,彭丽,罗隆福,等 .计及风电消纳的风储系统跟踪计划出力控制策略[J].电力建设,2023,44(9):160-170.
|
|
YANG J Y, PENG L, LUO L F,et al .Wind storage system tracking plan output control strategy considering wind power consumption[J].Electric Power Construction,2023,44(9):160-170.
|
10 |
兰贞波,冯万兴,胡军峰,等 .基于可变误差多面体算法的储能融合电锅炉提升风电消纳控制技术[J].电力自动化设备,2020,40(5):47-53. doi:10.16081/j.epae.202004022
|
|
LAN Z B, FENG W X, HU J F,et al .Usage of combined energy storage electric boiler to enhance wind power accommodation based on flexible tolerance polyhedron method[J].Electric Power Automation Equipment,2020,40(5):47-53. doi:10.16081/j.epae.202004022
|
11 |
荆朝霞 .新型电力系统下电力市场的建设及运行机制研究[J].电力工程技术,2022,41(1):1.
|
|
JING Z X .Research on the construction and operation mechanism of power market under the new power system[J].Electric Power Engineering Technology,2022,41(1):1.
|
12 |
郭庆来,兰健,周艳真,等 .基于混合智能的新型电力系统运行方式分析决策架构及其关键技术[J].中国电力,2023,56(9):1-13.
|
|
GUO Q L, LAN J, ZHOU Y Z,et al .A New power system operation mode analysis and decision architecture based on hybrid intelligence and its key technologies[J].Electric Power,2023,56(9):1-13.
|
13 |
苏步芸,王诗超 .新型电力系统背景下新能源送出合理消纳率研究[J].南方能源建设,2023,10(6):43-50.
|
|
SU B Y, WANG S C .Research on reasonable consumption rate of new energy transmission under the new power system[J].Southern Energy Construction,2023,10(6):43-50.
|
14 |
李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069
|
|
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069
|
15 |
孙韶华,王璐,白涌泉,等 .拉闸限电的背后:煤炭价格高企火电企业发电意愿低迷[N].企业家日报,2021-09-29(3).
|
|
SUN S H, WANG L, BAI Y Q,et al .Behind the power limit by pulling the gate:the willingness of thermal power enterprises to generate electricity is low because of high coal prices[N].Entrepreneur Daily,2021-09-29(3).
|
16 |
韩迪,马越,陆彬,等 .全球退煤进展追踪报告[R].北京:绿色创新发展中心,2021.
|
|
HAN D, MA Y, LU B,et al .Follow-up report on global coal withdrawal progress[R].Beijing:Green Innovation Development Center,2021.
|
17 |
韩迪,汪燕辉 .2022年全球退煤进展追踪报告[R].北京:绿色创新发展中心,2022.
|
|
HAN D, WANG Y H .Follow-up report on global coal withdrawal progress in 2022[R].Beijing:Green Innovation Development Center,2022.
|
18 |
CUI R N, HULTMAN N, JIANG K J,et al .A high ambition coal phaseout in China:feasible strategies through a comprehensive plant-by-plant assessment[R].Maryland:Center for Global Sustainability:College Park,2020.
|
19 |
International Energy Agency .Phasing out unabated coal current status and three case studies[R].London:IEA,2021. doi:10.1787/d6c4a08d-en
|
20 |
International Energy Agency .The role of China’s ETS in power sector decarbonisation[R].London:IEA,2021. doi:10.1787/799d0baa-en
|
21 |
LUO S H, HU W H, LIU W,et al .Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,166:112618. doi:10.1016/j.rser.2022.112618
|
22 |
WANG G, DENG J, ZHANG Y,et al .Air pollutant emissions from coal-fired power plants in China over the past two decades[J].The Science of the Total Environment,2020,741:140326. doi:10.1016/j.scitotenv.2020.140326
|
23 |
WANG W, LI Z,LYU J,et al .An overview of the development history and technical progress of China’s coal-fired power industry[J].Frontiers in Energy,2019,13(3):417-426. doi:10.1007/s11708-019-0614-2
|
24 |
ZHOU S, CHEN B, WEI W,et al .China’s power transformation may drastically change employment patterns in the power sector and its upstream supply chains[J].Environmental Research Letters,2022,17:1-11. doi:10.1088/1748-9326/ac5769
|
25 |
Climate Action Tracker .China going carbon neutral before 2060 would lower warming projections by around 0.2 to 0.3 degrees[EB/OL].(2020-09-23)[2023-06-05].
|
|
ound-2-to-3-tenths-of-a-degree .
|
26 |
CHEN L, MSIGWA G, YANG M,et al .Strategies to achieve a carbon neutral society:a review[J].Environmental Chemistry Letters,2022,20(4):2277-2310. doi:10.1007/s10311-022-01435-8
|
27 |
袁家海,张健,孟之绪,等 .电力系统灵活性提升:技术路径、经济性与政策建议[R].北京:自然资源保护协会,2022.
|
|
YUAN J H, ZHANG J, MENG Z X,et al .Improving the flexibility of power system:technical path,economy and policy suggestions[R].Beijing:Natural Resources Conservation Association,2022.
|
28 |
鲁宗相,李海波,乔颖 .含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158. doi:10.7500/AEPS20151215008
|
|
LU Z X, LI H B, QIAO Y .Power system flexibility planning and challenges considering high proportion of renewable energy[J].Automation of Electric Power Systems,2016,40(13):147-158. doi:10.7500/AEPS20151215008
|
29 |
International Energy Agency (IEA) .Harnessing variable renewables:a guide to the balancing challenge[M].Paris:OECD Publishing,2011:153-158. doi:10.1787/9789264111394-en
|
30 |
胡嘉骅 .电力系统灵活性提升方法及灵活调节产品获取机制[D].杭州:浙江大学,2018.
|
|
HU J H .Power system flexibility improvement method and flexible adjustment product acquisition mechanism[D].Hangzhou:Zhejiang University,2018.
|
31 |
LI J, HO M S, XIE C,et al .China’s flexibility challenge in achieving carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,158:112112. doi:10.1016/j.rser.2022.112112
|
32 |
甘益明,王昱乾,黄畅,等 .“双碳”目标下供热机组深度调峰与深度节能技术发展路径[J].热力发电,2022,51(8):1-10.
|
|
GAN Y M, WANG Y Q, HUANG C,et al .Development path of deep peak-shaving and deep energy conservation technology for cogeneration units with “dual carbon” target[J].Thermal Power Generation,2022,51(8):1-10.
|
33 |
KOYTSOUMPA E I, BERGINS C, KAKARAS E .Flexible operation of thermal plants with integrated energy storage technologies[J].Heat and Mass Transfer,2018,54(8):2453-2460. doi:10.1007/s00231-017-2148-7
|
34 |
COLIN H .Increasing the flexibility of coal-fired power plants[R].London:IEA Clean Coal Centre,2014.
|
35 |
欧阳子区,王宏帅,吕清刚,等 .煤粉锅炉发电机组深度调峰技术进展[J].中国电机工程学报,2023,43(22):8772-8790.
|
|
OUYANG Z Q, WANG H S, LÜ Q G,et al .Progress in deep peak regulation technology of pulverized coal fired boiler generator set[J].Proceedings of CSEE,2023,43(22):8772-8790.
|
36 |
马良玉,宁福军,宋胜男 .凝结水节流对机组负荷影响的仿真研究[J].热力发电,2015,44(3):109-114. doi:10.3969/j.issn.1002-3364.2015.03.109
|
|
MA L Y, NING F J, SONG S N .Influence of condensate throttling on unit load:simulation test[J].Thermal Power Generation,2015,44(3):109-114. doi:10.3969/j.issn.1002-3364.2015.03.109
|
37 |
刘吉臻,王耀函,曾德良,等 .基于凝结水节流的火电机组AGC控制优化方法[J].中国电机工程学报,2017,37(23):6918-6925.
|
|
LIU J Z, WANG Y H, ZENG D L,et al .An AGC control method of thermal unit based on condensate throttling[J].Proceedings of the CSEE,2017,37(23):6918-6925.
|
38 |
汤可怡,杨建明,蔡喜冬 .大型机组一次调频性能优化方法[J].发电设备,2016,30(6):374-377. doi:10.3969/j.issn.1671-086X.2016.06.003
|
|
TANG K Y, YANG J M, CAI X D .Optimization on primary frequency regulation of large power units[J].Power Equipment,2016,30(6):374-377. doi:10.3969/j.issn.1671-086X.2016.06.003
|
39 |
章良利,李敏,周晓蒙,等 .深度调峰下燃煤机组运行方式对能耗的影响[J].中国电力,2017,50(7):85-89. doi:10.11930/j.issn.1004-9649.2017.07.085.05
|
|
ZHANG L L, LI M, ZHOU X M,et al .Impact of the running modes of coal-fired units on energy consumption in in-depth peak load cycling[J]. Electric Power,2017,50(7):85-89. doi:10.11930/j.issn.1004-9649.2017.07.085.05
|
40 |
徐俊 .新能源消纳下的火电机组调峰策略及效益评估[D].南京:南京邮电大学,2021.
|
|
XU J .Peak regulation strategy and benefit evaluation of thermal power units under new energy consumption[D].Nanjing:Nanjing University of Posts and Telecommunications,2021.
|
41 |
陆昊 .新型电力系统中储能配置优化及综合价值测度研究[D].北京:华北电力大学,2021.
|
|
LU H .Research on optimization of energy storage configuration and comprehensive value measurement in new power system[D].Beijing:North China Electric Power University,2021.
|
42 |
KOYTSOUMPA E I, BERGINS C, KAKARAS E .Flexible operation of thermal plants with integrated energy storage technologies[J].Heat and Mass Transfer,2018,54(8):2453-2460. doi:10.1007/s00231-017-2148-7
|
43 |
MIMICA M, SINOVI Z, JOKI A,et al .The role of the energy storage and the demand response in the robust reserve and network-constrained joint electricity and reserve market[J].Electric Power Systems Research,2022,204:107716. doi:10.1016/j.epsr.2021.107716
|
44 |
SAMAKOOSH H M, JAFARI NOKANDI M, SHEIKHOLESLAMI A .Coordinated resource scheduling in a large scale virtual power plant considering demand response and energy storages[J].Journal of Operation and Automation in Power Engineering,2018,6(1):50-60.
|
45 |
BABU B C, FRIVALDSKY M, PIEGARI L,et al .Design,control, and application of energy storage in modern power systems[J].Electrical Engineering,2022,104(1):1-12. doi:10.1007/s00202-021-01431-1
|
46 |
徐彤,周云,王新雷 .300 MW级热电联产机组调峰能力研究[J].中国电力,2014,47(9):35-41.
|
|
XU T, ZHOU Y, WANG X L .Research on peak regulation capability of 300 MW combined heat and power plant[J].Electric Power,2014,47(9):35-41.
|
47 |
毕庆生,田春光,吕项羽,等 .大型供热机组深度参与电网调峰的一种新模式[J].汽轮机技术,2014,56(1):69-71. doi:10.3969/j.issn.1001-5884.2014.01.020
|
|
BI Q S, TIAN C G, LÜ X Y,et al .A new model of large heating units deeply involved in the peak regulation of power network[J].Turbine Technology,2014,56(1):69-71. doi:10.3969/j.issn.1001-5884.2014.01.020
|
48 |
郭丰慧,胡林献,周升彧 .基于二级热网储热式电锅炉调峰的弃风消纳调度模型[J].电力系统自动化,2018,42(19):50-56. doi:10.7500/AEPS20180130009
|
|
GUO F H, HU L X, ZHOU S Y .Dispatching model of wind power accommodation based on heat storage electric boiler for peak-load regulation in secondary heat supply network[J]. Automation of Electric Power Systems,2018,42(19):50-56. doi:10.7500/AEPS20180130009
|
49 |
秦婷,刘怀东,王锦桥,等 .基于碳交易的电-热-气综合能源系统低碳经济调度[J].电力系统自动化,2018,42(14):8-13. doi:10.7500/AEPS20171220005
|
|
QIN T, LIU H D, WANG J Q,et al .Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J].Automation of Electric Power Systems,2018,42(14):8-13. doi:10.7500/AEPS20171220005
|
50 |
马双忱,杨鹏威,王放放,等 .“双碳”目标下传统火电面临的挑战与对策[J].华电技术,2021,43(12):36-45.
|
|
MA S C, YANG P W, WANG F F,et al .Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J].Huadian Technology,2021,43(12):36-45.
|
51 |
刘思远 .配电网储能设备并联运行控制方法与控制特性[D].北京:华北电力大学,2021.
|
|
LIU S Y. Parallel operation control method and control characteristics of energy storage equipment in distribution network[D].Beijing:North China Electric Power University,2021.
|
52 |
王亚莉,叶泽,戴双凤,等 .基于ESG理念的新型电池储能综合价值测算及经济性评估[J].财经理论与实践,2022,43(5):108-115.
|
|
WANG Y L, YE Z, DAI S F,et al .Integrated value measurement and economic evaluation of new battery energy storage based on ESG concept[J].The Theory and Practice of Finance and Economics,2022,43(5):108-115.
|