Power Generation Technology ›› 2021, Vol. 42 ›› Issue (3): 313-321.DOI: 10.12096/j.2096-4528.pgt.20091
• New and Renewable Energy • Previous Articles Next Articles
Received:
2020-09-19
Published:
2021-06-30
Online:
2021-06-29
Supported by:
CLC Number:
Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network[J]. Power Generation Technology, 2021, 42(3): 313-321.
序号 | 参数名称 | 符号 | 序号 | 参数名称 | 符号 | |
1 | 风速 | v0 | 7 | 变桨力矩3 | M3 | |
2 | 变桨角1 | θ1 | 8 | 变桨电机温度1 | T1 | |
3 | 变桨角2 | θ2 | 9 | 变桨电机温度2 | T2 | |
4 | 变桨角3 | θ3 | 10 | 变桨电机温度3 | T3 | |
5 | 变桨力矩1 | M1 | 11 | 发电机转速 | Ω | |
6 | 变桨力矩2 | M2 | 12 | 功率 | P |
Tab. 1 Monitoring parameters of wind turbine pitch system
序号 | 参数名称 | 符号 | 序号 | 参数名称 | 符号 | |
1 | 风速 | v0 | 7 | 变桨力矩3 | M3 | |
2 | 变桨角1 | θ1 | 8 | 变桨电机温度1 | T1 | |
3 | 变桨角2 | θ2 | 9 | 变桨电机温度2 | T2 | |
4 | 变桨角3 | θ3 | 10 | 变桨电机温度3 | T3 | |
5 | 变桨力矩1 | M1 | 11 | 发电机转速 | Ω | |
6 | 变桨力矩2 | M2 | 12 | 功率 | P |
风机编号 | 风速/(m/s) | 异常信息 | 发生时间 | 恢复时间 |
FKD_F088 | 8.42 | 俯仰角1不同步 | 2017/01/01 07:58:12 | 2017/01/01 08:37:04 |
FKD_F088 | 5.05 | 变桨1驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 5.04 | 变桨2驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 6.76 | 存储继电器未复位 | 2017/01/01 08:00:04 | 2017/01/01 08:37:04 |
Tab. 2 Fault alarm record of wind turbine pitch system
风机编号 | 风速/(m/s) | 异常信息 | 发生时间 | 恢复时间 |
FKD_F088 | 8.42 | 俯仰角1不同步 | 2017/01/01 07:58:12 | 2017/01/01 08:37:04 |
FKD_F088 | 5.05 | 变桨1驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 5.04 | 变桨2驱动错误 | 2017/01/01 07:58:35 | 2017/01/01 08:37:04 |
FKD_F088 | 6.76 | 存储继电器未复位 | 2017/01/01 08:00:04 | 2017/01/01 08:37:04 |
编号 | 故障名称 | 编号 | 故障名称 | |
F1 | 俯仰驱动错误 | F6 | 制动位置错误 | |
F2 | 驱动器错误 | F7 | 刹车时超速 | |
F3 | 存储继电器未重新设置 | F8 | 俯仰位置误差消除 | |
F4 | 偏航制动保险丝 | F9 | 俯仰位置不同步 | |
F5 | 电源中断 | F10 | 正常 |
Tab. 3 Fault list
编号 | 故障名称 | 编号 | 故障名称 | |
F1 | 俯仰驱动错误 | F6 | 制动位置错误 | |
F2 | 驱动器错误 | F7 | 刹车时超速 | |
F3 | 存储继电器未重新设置 | F8 | 俯仰位置误差消除 | |
F4 | 偏航制动保险丝 | F9 | 俯仰位置不同步 | |
F5 | 电源中断 | F10 | 正常 |
数据 | 故障类别 | 总数 | |||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | ||
训练数据 | 233 | 238 | 224 | 84 | 74 | 245 | 232 | 229 | 238 | 18 203 | 20 000 |
验证数据 | 79 | 73 | 58 | 28 | 41 | 91 | 67 | 72 | 68 | 5 423 | 6 000 |
Tab. 4 Confusion information of the experimental data
数据 | 故障类别 | 总数 | |||||||||
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | ||
训练数据 | 233 | 238 | 224 | 84 | 74 | 245 | 232 | 229 | 238 | 18 203 | 20 000 |
验证数据 | 79 | 73 | 58 | 28 | 41 | 91 | 67 | 72 | 68 | 5 423 | 6 000 |
1 |
BOUFFARD F , GALIANA F D . Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23, 306- 316.
DOI |
2 | 杨昌杏, 李录平. 风力机叶片损伤故障检测技术研究进展[J]. 发电技术, 2020, 41 (6): 599- 607. |
YANG C X , LI L P . Research progress on blade damage fault detection technology of wind turbine[J]. Power Generation Technology, 2020, 41 (6): 599- 607. | |
3 | 夏候凯顺, 李波. 基于深度置信网络的双馈风机变换器开路故障诊断[J]. 电力工程技术, 2021, 40 (1): 188- 194. |
XIAHOU K S , LI B . Open-switch fault diagnosis of converters of doubly-fed induction generator-based wind turbine using deep belief networks[J]. Electric Power Engineering Technology, 2021, 40 (1): 188- 194. | |
4 | 赵世伟, 胡雪梅, 李烨, 等. 轴流送风机叶片断裂事故分析及对策[J]. 浙江电力, 2019, 38 (5): 115- 118. |
ZHAO S E , HU X M , LI Y , et al. Analysis and countermeasure on blade fracture of axial flow forced draft fan[J]. Zhejiang Electric Power, 2019, 38 (5): 115- 118. | |
5 |
党建, 魏晋源, 贾嵘, 等. 基于Hilbert和CA-VMD的风电机组叶轮不平衡故障电信号特征提取方法[J]. 电网与清洁能源, 2021, 37 (1): 112- 118.
DOI |
DANG J , WEI J Y , JIA R , et al. Feature extraction method for unbalanced fault electrical signal of wind turbine impeller based on Hilbert and CA-VMD[J]. Power System and Clean Energy, 2021, 37 (1): 112- 118.
DOI |
|
6 | 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49 (4): 1- 6. |
HAI T , FAN H , WANG K J , et al. Icing fault diagnosis of wind turbines based on PSO-SVM algorithm[J]. Smart Power, 2021, 49 (4): 1- 6. | |
7 |
YANG W , COURT R , JIANG J . Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy, 2013, 53, 365- 376.
DOI |
8 |
SCHLECHTINGEN M , SANTOS I F . Wind turbine condition monitoring based on SCADA data using normal behavior models.Part 2:Application examples[J]. Applied Soft Computing, 2014, 14, 447- 460.
DOI |
9 |
ABRAMSON N , BRAVERMAN D J , SEBESTYEN G S . Pattern recognition and machine learning[J]. IEEE Transactions on Information Theory, 1963, 9, 257- 261.
DOI |
10 | MITCHELL T M . Machine learning[M]. New York: McGraw-Hill, 2003. |
11 |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015, 521, 436- 444.
DOI |
12 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
DOI |
13 | DENG L , YU D . Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2013, 7, 1811- 192. |
14 | JIANG G Q , HE H B , YAN J , et al. Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2019, 66, 3196- 3207. |
15 | YANG R , HUANG M G , LU Q D , et al. Rotating machinery fault diagnosis using long-short-term memory recurrent neural network[J]. IFAC-Papers On Line, 2018, 51, 228- 232. |
16 | YU W X , HUANG S D , XIAO W H . Fault diagnosis based on an approach combining a spectrogram and a convolutional neural network with application to a wind turbine system[J]. Energies, 2018, 11, 1- 11. |
17 | DU Y L , LI J Z , ZHANG Y , et al. Saliency detection based on deep cross CNN and non-interaction GrabCut[J]. Computer Engineering & Applications, 2017, 53, 32- 40. |
18 | SUTSKEVER I, HINTON G E, TAYLOR G W. The recurrent temporal restricted Boltzmann machine[C]//Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, December 8-11, 2008. |
19 | GEOFFREY H E . Deep belief networks[J]. Scholarpedia, 2009, 4, 1- 4. |
20 | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//International Conference on Machine Learning. Helsinki, Finland, June 5-9, 2008. |
21 | VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11, 3371- 3408. |
22 |
QIN Y , WANG X , ZOU J Q . The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines[J]. IEEE Transactions on Industrial Electronics, 2019, 66, 3814- 3824.
DOI |
23 |
QIN F W , BAI J , YUAN W Q . Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks[J]. Journal of Vibroengineering, 2017, 19, 2439- 2455.
DOI |
24 |
ZHAO H S , LIU H H , HU W J , et al. Anomaly detection and fault analysis of wind turbine components based on deep learning network[J]. Renewable Energy, 2018, 127, 825- 834.
DOI |
25 |
WANG S X , LI M , ZHAO L , et al. Short-term wind power prediction based on improved small-world neural network[J]. Neural Computing and Applications, 2019, 29, 3173- 3185.
DOI |
26 | LI M , WANG S X . Dynamic fault monitoring of pitch system in wind turbines using selective ensemble small-world neural networks[J]. Energies, 2019, 12, 1- 20. |
27 |
WATTS D J , STROGATZ S H . Collective dynamics of small world networks[J]. Nature, 1998, 393, 440- 442.
DOI |
28 |
KIM S Y , LIM W . Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity[J]. Neural Networks, 2018, 97, 92- 106.
DOI |
29 |
HUMPERT B K . Improving back propagation with a new error function[J]. Neural Networks, 1994, 7, 1191- 1192.
DOI |
[1] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[2] | Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN. Research on Dynamic Characteristics of Monopile Offshore Wind Turbine Tower Under Different Wind Speed Conditions [J]. Power Generation Technology, 2024, 45(2): 312-322. |
[3] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[4] | Zhipeng QIN, Gaosheng WEI, Liu CUI, Xiaoze DU. Study on Aerodynamic Performance of Wind Turbine Airfoil With Combined S-Slot and Trailing Edge Flap Control [J]. Power Generation Technology, 2024, 45(1): 24-31. |
[5] | Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis [J]. Power Generation Technology, 2023, 44(6): 824-832. |
[6] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[7] | Hang ZHANG, Chuanjie ZHOU, Lin ZHANG, Jietao CHEN, Chunmei XU, Daogang PENG. Fault Diagnosis of Power Plant Induced Draft Fan Based on PNN-WNN-DS Information Fusion [J]. Power Generation Technology, 2022, 43(6): 951-958. |
[8] | Ang FAN, Luping LI, Shihai ZHANG, Minnan OUYANG, Xiankui WEN, Shangnian CHEN. A Review on Dynamic Characteristics and Life Loss of Large Wind Turbine Towers [J]. Power Generation Technology, 2022, 43(3): 421-430. |
[9] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
[10] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[11] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[12] | Zhiwei ZHANG, Jianping ZHANG, Ming LIU, Haipeng JI, Haojun ZHU, Shengdi ZHOU. Analysis on Variation Characteristics of Offshore Wind Resources in Luchao Port [J]. Power Generation Technology, 2022, 43(2): 260-267. |
[13] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[14] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[15] | Lei ZHANG, Jiying LI, Qinwei LI, Mince ZHANG, Yunfeng GUO, Lidong ZHANG. Status and Prospect of Yaw System Control Strategy for Wind Turbines [J]. Power Generation Technology, 2021, 42(3): 306-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||