Power Generation Technology ›› 2022, Vol. 43 ›› Issue (2): 218-226.DOI: 10.12096/j.2096-4528.pgt.22026
• Offshore Wind Power Generation Technology • Previous Articles Next Articles
Danmei HU, Li ZENG, Yunhao CHEN
Received:
2022-02-10
Published:
2022-04-30
Online:
2022-05-13
Supported by:
CLC Number:
Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines[J]. Power Generation Technology, 2022, 43(2): 218-226.
参数 | 数值 |
---|---|
风轮直径/m 叶片长度/m 轮毂直径/m | 126 61.5 5 |
额定风速/(m·s-1) | 11.4 |
切入风速/(m·s-1) | 3 |
切出风速/(m·s-1) | 25 |
额定转速/(rad·s-1) | 12.1 |
额定功率/MW | 5 |
塔筒高度/m | 90 |
半潜式浮式平台整体外廓/(m×m) | 50×50 |
平台中心圆筒过渡段/m | D:1.6, H:22.8 |
浮筒外廓/m 浮筒斜撑尺寸/m 浮筒上下圆筒横梁尺寸/m 系泊缆尺寸/m | D:12, H:36 D:1.6, H:33.8 D:1.6, H:40 D:0.16, H:50 |
Tab. 1 Wind turbine structure parameters
参数 | 数值 |
---|---|
风轮直径/m 叶片长度/m 轮毂直径/m | 126 61.5 5 |
额定风速/(m·s-1) | 11.4 |
切入风速/(m·s-1) | 3 |
切出风速/(m·s-1) | 25 |
额定转速/(rad·s-1) | 12.1 |
额定功率/MW | 5 |
塔筒高度/m | 90 |
半潜式浮式平台整体外廓/(m×m) | 50×50 |
平台中心圆筒过渡段/m | D:1.6, H:22.8 |
浮筒外廓/m 浮筒斜撑尺寸/m 浮筒上下圆筒横梁尺寸/m 系泊缆尺寸/m | D:12, H:36 D:1.6, H:33.8 D:1.6, H:40 D:0.16, H:50 |
风速/(m·s-1) | 转速/(rad·min-1) | 角速度/(rad·s-1) |
---|---|---|
4 | 7.18 | 0.752 |
5 | 7.38 | 0.773 |
6 | 7.94 | 0.831 |
7 | 8.46 | 0.886 |
8 | 9.16 | 0.959 |
9 | 10.33 | 1.082 |
10 | 11.43 | 1.197 |
11.4 | 12.10 | 1.267 |
Tab. 2 Wind turbine speed at different wind speeds
风速/(m·s-1) | 转速/(rad·min-1) | 角速度/(rad·s-1) |
---|---|---|
4 | 7.18 | 0.752 |
5 | 7.38 | 0.773 |
6 | 7.94 | 0.831 |
7 | 8.46 | 0.886 |
8 | 9.16 | 0.959 |
9 | 10.33 | 1.082 |
10 | 11.43 | 1.197 |
11.4 | 12.10 | 1.267 |
1 | 董文博,顾秀芳,陈艳宁 .风电并网价值分析[J].发电技术,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 |
DONG W B, GU X F, CHEN Y N .Value analysis of wind power integration[J].Power Generation Technology,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 | |
2 | 姜楠 .深海风力发电技术的发展现状与前景分析[J].新能源进展,2015,3(1):21-24. doi:10.3969/j.issn.2095-560X.2015.01.004 |
JIANG N .Development status and prospect analysis of deep-sea wind power technology[J].Advances in New and Renewable Energy,2015,3(1):21-24. doi:10.3969/j.issn.2095-560X.2015.01.004 | |
3 | 杨大业,项祖涛,罗煦之,等 .永磁型风机海上风电送出系统甩负荷故障暂时过电压影响因素分析[J].发电技术,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 |
YANG D Y, XIANG Z T, LUO X Z,et al .Analysis on influence factors of temporary overvoltage of load rejection fault of offshore wind power transmission system of permanent magnet synchronous generator[J].Power Generation Technology,2022,43(1):111-118. doi:10.12096/j.2096-4528.pgt.20033 | |
4 | 余浩,肖彭瑶,林勇,等 .大规模海上风电高电压穿越研究进展与展望[J].智慧电力,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 |
YU H, XIAO P Y, LIN Y,et al .Review on high voltage ride-through strategies for offshore doubly-fed wind farms[J].Smart Power,2020,48(3):30-38. doi:10.3969/j.issn.1673-7598.2020.03.005 | |
5 | 付艳,周晓风,戴国安,等 .海上风电直流耗能装置和保护配合策略研究[J].电力系统保护与控制,2021,49(15):178-186. |
FU Y, ZHOU X F, DAI G A,et al .Research on coordination strategy for an offshore wind power DC chopper device and protection[J].Power System Protection and Control,2021,49(15):178-186. | |
6 | 王旭东,曹燕燕 .海上风力发电技术现状及发展趋势[J].科技创新导报,2008(5):92. doi:10.3969/j.issn.1674-098X.2008.05.088 |
WANG X D, CAO Y Y .Status and development trend of offshore wind power technology[J].Science and Technology Innovation Herald, 2008(5):92. doi:10.3969/j.issn.1674-098X.2008.05.088 | |
7 | 李静,孙亚胜 .海上风力发电机组的基础形式[J].上海电力,2008,21(3):314-317. |
LI J, SUN Y S .Basic form of offshore wind turbine[J].Shanghai Electric Power,2008,21(3): 314-317. | |
8 | 王涵 .小水深半潜型风电浮式基础的耦合动力分析与试验研究[D].天津:天津大学,2014. |
WANG H .Coupled dynamic analysis and experimental research of semi-submersible floating foundation for wind power in the shallow water[D].Tianjin:Tianjin University,2014. | |
9 | MASCIOLA M, ROBERTSON A, JONKMAN J,et al .Assessment of the importance of mooring dynamics on the global response of the deepcwind floating semisubmersible offshore wind turbine[J].Bollettino Della Società Italiana Di Biologia Sperimentale,2013,46(11):553-555. |
10 | CHENG P, HUANG Y, WAN D C .A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine[J].Ocean Engineering, 2019,173(1):183-196. doi:10.1016/j.oceaneng.2018.12.021 |
11 | 刘海锋,孙凯,胡丹梅 .大型风力机尾迹双向流固耦合特性分析[J].可再生能源,2015,33(11):1664-1673. |
LIU H F, SUN K, HU D M .Analysis of bidirectional fluid-solid coupling characteristics of large wind turbine wake[J].Renewable Energy Resources,2015,33(11):1664-1673. | |
12 | 邓新丽,孙文磊 .大型风力机叶片在三维湍流下的载荷分析与计算[J].机床与液压,2013,41(1):28-30. doi:10.3969/j.issn.1001-3881.2013.01.008 |
DENG X L, SUN W L .Load analysis and calculation of large wind turbine blades under three-dimensional turbulence[J].Machine Tool and Hydraulics,2013,41(1):28-30. doi:10.3969/j.issn.1001-3881.2013.01.008 | |
13 | CHEN J H, HU Z Q, WAN D C,et al .Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts[J].Ocean Engineering,2018,15:305-318. doi:10.1016/j.oceaneng.2018.01.104 |
14 | 吴云峰 .双向流固耦合两种计算方法的比较[D].天津:天津大学,2009. doi:10.1007/s12209-009-0036-z |
WU Y F .Comparison of two calculation methods of fluid-solid interaction[D].Tianjin :Tianjin University,2009. doi:10.1007/s12209-009-0036-z | |
15 | 周迪 .叶轮机械非定常流动及气动弹性计算[D].南京:南京航空航天大学,2019. |
ZHOU D .Numerical investigations of unsteady aerodynamics and aeroelasticity of turbomachines[D].Nanjing :Nanjing University of Aeronautics and Astronautics,2019. | |
16 | 陶文铨 .数值传热学[M].西安:西安交通大学出版社,2011:372-375. |
TAO W Q .Numerical heat transfer[M].Xi’an : Xi’an University Press,2011: 372-375. | |
17 | 任年鑫,欧进萍 .大型海上风力机尾迹区域风场分析[J].计算力学学报,2012,29(3):327-332. doi:10.7511/jslx20123006 |
REN N X, OU J P .Numerical analysis for the wake zone of large offshore wind turbine[J].Chinese Journal of Computational Mechanics,2012,29(3):327-332. doi:10.7511/jslx20123006 | |
18 | CHOUDHURY D .Introduction to the renormalization group method and turbulence modeling[R].New York:Fluent Incorporated Technical Memorandum TM-107,1993. |
19 | 王丽丽,田德,王海宽,等 .风力发电机组风轮的叶片材料[J].农村牧区机械化,2009(2): 39-42. doi:10.3969/j.issn.1007-3191.2009.02.020 |
WANG L L, TIAN D, WANG H K,et al .Blade material of wind wheel of wind turbine[J].Mechanization of Rural Pastoral Areas,2009(2):39-42. doi:10.3969/j.issn.1007-3191.2009.02.020 | |
20 | 张建平,李冬亮,韩熠 .大型风力机叶片在不同平均风速作用下的挠度及应力分析[J].可再生能源,2012,30(7):37-40. |
ZHANG J P, LI D L, HAN Y .Deflection and stress analysis of large wind turbine blades under different average wind speeds[J].Renewable Energy,2012,30(7):38-40. | |
21 | JONKMAN J M, BUTTERFIELD S, MUSIAL W,et al .Definition of a 5 MW reference wind turbine for offshore system development[R].Golden,Colorado,USA:National Renewable Energy Laboratory,2009. |
[1] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[2] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[3] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[4] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[5] | Hao WU, Xiao XU, Zinan PENG, Ninghui GUO, Qifeng WANG. Research on Electrical Equipment Big Data Mobile Laboratory Based on Power Grid Cloud Data Management and Its Application [J]. Power Generation Technology, 2023, 44(3): 417-424. |
[6] | Ronghui WU, Dong LIU, Ye YU, Kailong MU, Lanhao ZHAO. Two-Way Fluid-Structure Interaction Numerical Simulation Method for Offshore Wind Power Based on Immersed Boundary Method [J]. Power Generation Technology, 2023, 44(1): 44-52. |
[7] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
[8] | Xiaoming LIU, Zukuang TAN, Zhenhua YUAN, Yutian LIU. Comprehensive Optimization of Access Point Selection for Offshore Wind Farm Integrated With Voltage Source Converter High Voltage Direct Current [J]. Power Generation Technology, 2022, 43(6): 892-900. |
[9] | Hui DONG, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Differences Between Hydrogen Production From Offshore Wind Power and Direct Outward Transmission of Electric Energy [J]. Power Generation Technology, 2022, 43(6): 869-879. |
[10] | Xiaotong GAO, Zhilong QIN, Xinyu GAO. Reliability Evaluation of Multi-Energy Generation and Transmission System With Offshore Wind Power-Photovoltaic-Energy Storage [J]. Power Generation Technology, 2022, 43(4): 626-635. |
[11] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
[12] | Jianing ZHU, Shitan ZHANG, Weichun GE, Chuang LIU, Shuai CHU. Overview of Offshore Wind Power Transmission and Power Transportation Technology [J]. Power Generation Technology, 2022, 43(2): 236-248. |
[13] | Bin XU, Shuai XUE, Houlei GAO, Fang PENG. Development Status and Prospects of Offshore Wind Farms and It’s Key Technology [J]. Power Generation Technology, 2022, 43(2): 227-235. |
[14] | Zuozhou CHEN, Hao YU, Panpan WANG, Honglin CHEN, Wuhui CHEN. Definition and Influencing Factors of Short-Circuit Ratio Between Offshore Wind Power Cluster and Thermal Power Bundling System [J]. Power Generation Technology, 2022, 43(2): 207-217. |
[15] | Xuelin LI, Ling YUAN. Development Status and Suggestions of Hydrogen Production Technology by Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||