Power Generation Technology ›› 2022, Vol. 43 ›› Issue (4): 655-663.DOI: 10.12096/j.2096-4528.pgt.21005
• Power Generation and Environmental Protection • Previous Articles Next Articles
Yun CHEN1, Sen LI2,3, Yuanbin ZHAO3
Received:
2021-09-20
Published:
2022-08-31
Online:
2022-09-06
Supported by:
CLC Number:
Yun CHEN, Sen LI, Yuanbin ZHAO. Optimization Study of Power Plant Direct Flow Cold-end Subsystem Based on Negative Digging[J]. Power Generation Technology, 2022, 43(4): 655-663.
公式名称 | 公式 |
---|---|
热平衡方程 | |
凝结水温度 | |
HEI传热计算法 | |
别尔曼总传热系数法 | |
凝汽器水阻 | |
沟道沿程阻力损失 | |
渠道沿程阻力 | |
管、沟、渠的局部阻力 | |
年费用计算 | |
循环水泵耗电费用 | |
年微增功率收益 |
Tab. 1 Calculation formula for cold-end optimization
公式名称 | 公式 |
---|---|
热平衡方程 | |
凝结水温度 | |
HEI传热计算法 | |
别尔曼总传热系数法 | |
凝汽器水阻 | |
沟道沿程阻力损失 | |
渠道沿程阻力 | |
管、沟、渠的局部阻力 | |
年费用计算 | |
循环水泵耗电费用 | |
年微增功率收益 |
参数 | 取值 |
---|---|
热力计算方法 | HEI传热计算法 |
循泵配置 | 一机两泵 |
虹吸井管沟类型 | 矩形管沟 |
溢流堰类型 | 斜交堰 |
负挖深度/m | 0 |
溢流堰堰顶绝对标高/m | 11.8 |
虹吸井底板绝对标高/m | 6 |
成本电价/[元/(kW·h)] | 0.24 |
微增电价/[元/(kW·h)] | 0.42 |
循环水泵效率 | 0.95 |
年固定分摊率 | 0.126 5 |
年运行时间/h | 7 000 |
汽轮机排气量/(m3/h) | 1 728 |
冷却水进水温度/℃ | 20 |
凝汽器单价/(元/m2) | 1 000 |
盐度/(g/kg) | 50 |
冷却管管材 | 钛管 |
背压形式 | 单背压 |
流程数 | 2 |
冷却管外径/mm | 25 |
冷却管壁厚/mm | 1 |
清洁系数 | 0.85 |
冷却管长度/m | 13.3 |
管内流速范围/(m/s) | 1.0~3.5 |
Tab. 2 Calculation parameters of the cold end subsystem
参数 | 取值 |
---|---|
热力计算方法 | HEI传热计算法 |
循泵配置 | 一机两泵 |
虹吸井管沟类型 | 矩形管沟 |
溢流堰类型 | 斜交堰 |
负挖深度/m | 0 |
溢流堰堰顶绝对标高/m | 11.8 |
虹吸井底板绝对标高/m | 6 |
成本电价/[元/(kW·h)] | 0.24 |
微增电价/[元/(kW·h)] | 0.42 |
循环水泵效率 | 0.95 |
年固定分摊率 | 0.126 5 |
年运行时间/h | 7 000 |
汽轮机排气量/(m3/h) | 1 728 |
冷却水进水温度/℃ | 20 |
凝汽器单价/(元/m2) | 1 000 |
盐度/(g/kg) | 50 |
冷却管管材 | 钛管 |
背压形式 | 单背压 |
流程数 | 2 |
冷却管外径/mm | 25 |
冷却管壁厚/mm | 1 |
清洁系数 | 0.85 |
冷却管长度/m | 13.3 |
管内流速范围/(m/s) | 1.0~3.5 |
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
温度/℃ | 12.6 | 14.1 | 17.2 | 20.8 | 23.5 | 24.9 | 24.9 | 24.6 | 23.3 | 20.6 | 16.8 | 13.5 |
水流量比值 | 0.85 | 0.85 | 0.85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 | 0.85 |
Tab. 3 Monthly water temperature and circulating water volume ratio for cold-end optimization
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
温度/℃ | 12.6 | 14.1 | 17.2 | 20.8 | 23.5 | 24.9 | 24.9 | 24.6 | 23.3 | 20.6 | 16.8 | 13.5 |
水流量比值 | 0.85 | 0.85 | 0.85 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.85 | 0.85 |
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
温度/℃ | 12.6 | 14.1 | 17.2 | 20.8 | 23.5 | 24.9 | 24.9 | 24.6 | 23.3 | 20.6 | 16.8 | 13.5 |
最佳背压/kPa | 3.26 | 3.54 | 4.17 | 5.30 | 6.10 | 6.55 | 6.55 | 6.45 | 6.03 | 5.24 | 4.09 | 3.42 |
Tab. 4 Best back pressure of each month for cold-end optimization
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
温度/℃ | 12.6 | 14.1 | 17.2 | 20.8 | 23.5 | 24.9 | 24.9 | 24.6 | 23.3 | 20.6 | 16.8 | 13.5 |
最佳背压/kPa | 3.26 | 3.54 | 4.17 | 5.30 | 6.10 | 6.55 | 6.55 | 6.45 | 6.03 | 5.24 | 4.09 | 3.42 |
参数组号 | 背压/kPa | 冷却面积/m2 | 冷却倍率 | 主径/m | 年费用/万元 | 水流量/(m3/h) | 扬程/m | 管根数 | 管流速/(m/s) |
---|---|---|---|---|---|---|---|---|---|
1 | 5.16 | 62 000 | 55 | 3.7 | 3 050.005 | 95 040 | 23.43 | 32 258 | 2.0 |
2 | 5.21 | 59 000 | 55 | 4.0 | 3 050.396 | 95 040 | 23.40 | 30 697 | 2.1 |
3 | 5.21 | 59 000 | 55 | 3.9 | 3 051.587 | 95 040 | 23.55 | 30 697 | 2.1 |
4 | 5.21 | 59 000 | 55 | 3.8 | 3 054.168 | 95 040 | 23.72 | 30 697 | 2.1 |
5 | 5.28 | 58 000 | 54 | 3.6 | 3 054.207 | 93 312 | 23.96 | 30 176 | 2.1 |
6 | 5.19 | 61 000 | 55 | 3.8 | 3 054.595 | 95 040 | 23.38 | 31 737 | 2.0 |
7 | 5.16 | 62 000 | 55 | 3.6 | 3 056.241 | 95 040 | 23.67 | 32 258 | 2.0 |
8 | 5.10 | 63 000 | 56 | 4.1 | 3 056.930 | 96 768 | 22.96 | 32 778 | 2.0 |
9 | 5.10 | 63 000 | 56 | 4.0 | 3 057.287 | 96 768 | 23.09 | 32 778 | 2.0 |
10 | 5.21 | 59 000 | 55 | 3.7 | 3 058.411 | 95 040 | 23.93 | 30 697 | 2.1 |
Tab. 5 The top ten optimal configuration parameters before cold-end optimization
参数组号 | 背压/kPa | 冷却面积/m2 | 冷却倍率 | 主径/m | 年费用/万元 | 水流量/(m3/h) | 扬程/m | 管根数 | 管流速/(m/s) |
---|---|---|---|---|---|---|---|---|---|
1 | 5.16 | 62 000 | 55 | 3.7 | 3 050.005 | 95 040 | 23.43 | 32 258 | 2.0 |
2 | 5.21 | 59 000 | 55 | 4.0 | 3 050.396 | 95 040 | 23.40 | 30 697 | 2.1 |
3 | 5.21 | 59 000 | 55 | 3.9 | 3 051.587 | 95 040 | 23.55 | 30 697 | 2.1 |
4 | 5.21 | 59 000 | 55 | 3.8 | 3 054.168 | 95 040 | 23.72 | 30 697 | 2.1 |
5 | 5.28 | 58 000 | 54 | 3.6 | 3 054.207 | 93 312 | 23.96 | 30 176 | 2.1 |
6 | 5.19 | 61 000 | 55 | 3.8 | 3 054.595 | 95 040 | 23.38 | 31 737 | 2.0 |
7 | 5.16 | 62 000 | 55 | 3.6 | 3 056.241 | 95 040 | 23.67 | 32 258 | 2.0 |
8 | 5.10 | 63 000 | 56 | 4.1 | 3 056.930 | 96 768 | 22.96 | 32 778 | 2.0 |
9 | 5.10 | 63 000 | 56 | 4.0 | 3 057.287 | 96 768 | 23.09 | 32 778 | 2.0 |
10 | 5.21 | 59 000 | 55 | 3.7 | 3 058.411 | 95 040 | 23.93 | 30 697 | 2.1 |
1 | 王玮 .火电机组冷端系统建模与节能优化研究[D].北京:华北电力大学,2011. |
WANG W . Research on modeling and energy-saving optimization of cold end system in thermal power units[D].Beijing: North China Electric Power University, 2011. | |
2 | GAO X, ZHANG C, WEI J, et al . Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant[J].Heat & Mass Transfer, 2009, 45(11) :1423-1433. doi:10.1007/s00231-009-0521-x |
3 | LASKOWSKI R . Relations for steam power plant condenser performance in off-designconditions in the function of inlet parameters and those relevant in reference conditions[J].Applied Thermal Engineering, 2016, 103 : 528-536. doi:10.1016/j.applthermaleng.2016.04.127 |
4 | SUN J L, XUE R J, PENG M J . Investigation of the thermal characteristics ofcondensers in nuclear power plant by simulation with zoning model[J].Annals of Nuclear Energy,2018, 113 : 37-47. doi:10.1016/j.anucene.2017.11.015 |
5 | AHMED H, YAHYA R, ABRAHAM E . Feasibility of using vapor compressionrefrigeration system for cooling team plant condenser[J].Applied Thermal Engineering,2016, 106 : 570-578. doi:10.1016/j.applthermaleng.2016.06.005 |
6 | EDRAN M V, BRANIMIR P, VEDRAN M . Numerical model foron-condition monitoring of condenser in coal-fired power plants[J].International Journal of Heat and Mass Transfer,2018, 117: 912-923. doi:10.1016/j.ijheatmasstransfer.2017.10.047 |
7 | 唐江,王学栋,赵玉柱,等 .凝汽机组高背压供热改造后的性能指标与调峰能力分析[J].发电技术,2018,39(5):455-461. doi:10.12096/j.2096-4528.pgt.2018.070 |
TANG J, WANG X D, ZHAO Y Z, et al . Analysis of performance indicators and peak regulation capacity of condensing unit after high back pressure retrofit for heating[J].Power Generation Technology, 2018,39(5):455-461. doi:10.12096/j.2096-4528.pgt.2018.070 | |
8 | 卢怀钿,钟少伟 .1 036 MW机组汽轮机冷端运行优化及循泵双速节能改造的试验研究[J].电力建设,2011,32(7):109-112. |
LU H T, ZHONG S W . Experimental research on Double speed energy efficiency innovation of water circulation pump and operation optimization of cold end system for 1 036 MW steam turbine units[J].Electric Power Construction, 2011,32(7):109-112. | |
9 | 王东海, 赵云驰 . 滨海核电厂配置单、双背压凝汽器技经分析[J].电力建设, 2013, 34(3): 80-83. doi:10.3969/j.issn.1000-7229.2013.03.018 |
WANG D H, ZHAO Y C . Technical and economic analysis on single and double backpressure condensers in coastal nuclear power plants[J].Electric Power Construction, 2013, 34(3): 80-83. doi:10.3969/j.issn.1000-7229.2013.03.018 | |
10 | 李振鹏, 陶志伟, 侯平利,等 . 内陆核电厂冷端系统参数优化分析[J].核科学与工程, 2010, 30(S1): 211-216. |
LI Z P, TAO Z W, HOU P L, et al .Optimised analysis of cold-end system parameters of inland nuclear power plants[J].Nuclear Science and Engineering, 2010, 30(S1): 211-216. | |
11 | 黄璟晗 . F级联合循环冷端系统优化方案研究[J].汽轮机技术, 2020, 62(1): 73-74. |
HUANG J H . Study of F class GTCC cold junction optimization[J].Turbine Technology, 2020, 62(1): 73-74. | |
12 | 杨若冰, 牛华寺, 白玮, 等 . 直流冷却核电厂冷端系统优化探讨[J].给水排水, 2018,54(S1): 28-31. |
YANG R B, NIU H S, BAI W, et al . Discussion cold nd optimization in nuclear power plant with once-through cooling mode[J].Water & Wastewater Engineering, 2018, 54(S1): 28-31. | |
13 | 王奔, 司风琪, 刘海军 . 燃煤电厂300 MW机组循环水系统运行优化研究[J].热能动力工程, 2017, 32(11): 78-85. |
WANG B, SI F Q, LIU H J . Study on operation optimization for circulating water system of 300 MW unit in a coal-fired power plant[J].Journal of Engineering for Thermal Energy and Power, 2017, 32(11) : 78-85. | |
14 | 李萍, 王鹏, 周建新, 等 . 基于自适应模型的热电联产机组循环水系统运行优化[J].中国电机工程学报, 2018, 38(18): 5500-5509. |
LI P, WANG P, ZHOU J X, et al . Circulating water system operation optimization of cogeneration units based on adaptive model[J].Proceedings of the CSEE. 2018,38(18): 5500-5509. | |
15 | 赵银亮 . AP1000核电机组冷端设计优化研究[D].北京:华北电力大学, 2016. |
ZHAO Y L .Study on optimal design cold-end system of an AP1000 nuclear power plant[D].Beijing:North China Electric Power University, 2016. | |
16 | 郭容赫 . 基于定流量的火电厂冷端优化分析及试验研究[D].北京:华北电力大学,2018. |
GUO R H . Cold end optimization of thermal power plant based on constant flow Analysis and experimental research[D].Beijing:North China Electric Power University, 2018. | |
17 | 靳江波 . 大型燃气联合循环汽轮机凝汽器及冷端节能优化评价与分析[D].北京:华北电力大学, 2017. |
JIN J B . Large gas Combined--cycle Steam turbine Condenser and Cold side Energy conservation the evaluation and analysis[D].Beijing:North China Electric Power University, 2017. | |
18 | 茅泽育,赵凯,赵璇,等 .管道汇流口局部阻力试验研究[J].水利学报,2007(7):812-818. doi:10.3321/j.issn:0559-9350.2007.07.008 |
MAO Z Y, ZHAO K, ZHAO X, et al . Experimental study on local flow resistance at junctions of circular pipes[J].Journal of Water Resources, 2007(7): 812-818. doi:10.3321/j.issn:0559-9350.2007.07.008 | |
19 | 胡寿根,秦宏波,白晓宁,等 .固体物料管道水力输送的阻力特性[J].机械工程学报,2002(10):12-16. doi:10.3321/j.issn:0577-6686.2002.10.003 |
HU S G, QIN H B, BAI X N, et al . Resistance characteristics of particulate materials in pipeine hydro-transport[J]. Journal of Mechanical Engineering, 2002(10): 12-16. doi:10.3321/j.issn:0577-6686.2002.10.003 | |
20 | 费祥俊 .固体管道水力输送摩阻损失的预测[J].水利学报,1986(12):20-29. doi:10.3321/j.issn:0559-9350.1986.12.003 |
FEI X J . Predietion of the frietional energy gradient for soldi liqud fliow in pipe[J].Journal of Water Resources, 1986(12): 20-29. doi:10.3321/j.issn:0559-9350.1986.12.003 | |
21 | 庄乾伟 . 火电机组冷端分析与优化[D].北京:华北电力大学,2018. |
ZHUANG Q W . Cold-end analysis and optimization of thermal power units[D].Beijing: North China Electric Power University, 2018. |
[1] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[4] | Anan ZHANG, Qi ZHOU, Qian LI, Ning DING, Chao YANG, Yan MA. Research Status and Prospect of CO2 Accounting Technology in Thermal Power Plants Under the Goal of Dual Carbon [J]. Power Generation Technology, 2024, 45(1): 51-61. |
[5] | Daijun CHEN, Lili CHEN, Yangtao LI. Electrical Power Output Prediction of Combined Cycle Power Station [J]. Power Generation Technology, 2024, 45(1): 99-105. |
[6] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[7] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
[8] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[9] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
[10] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[11] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[12] | Qiuye SUN, Jia YAO, Yifan WANG. From Virtual Power Plant to Real Electricity: Summary and Prospect of Virtual Power Plant Research [J]. Power Generation Technology, 2023, 44(5): 583-601. |
[13] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[14] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[15] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||