Power Generation Technology ›› 2022, Vol. 43 ›› Issue (4): 664-672.DOI: 10.12096/j.2096-4528.pgt.20109
• Power Generation and Environmental Protection • Previous Articles Next Articles
Hui ZHANG1,2, Xiufang GU1, Yanning CHEN1, Zhenpeng LUO1, Chen WANG1
Received:
2021-10-01
Published:
2022-08-31
Online:
2022-09-06
Supported by:
CLC Number:
Hui ZHANG, Xiufang GU, Yanning CHEN, Zhenpeng LUO, Chen WANG. Benefit Cost Analysis of Thermal Storage Tank in Thermal Power Plant Considering Wind Power Consumption[J]. Power Generation Technology, 2022, 43(4): 664-672.
参数 | 热电机组 | 常规机组 | 风电 |
---|---|---|---|
装机容量/MW | 1 900 | 900 | 900 |
所占比例/% | 51.4 | 24.3 | 24.3 |
Tab. 1 Installed capacity of power grid
参数 | 热电机组 | 常规机组 | 风电 |
---|---|---|---|
装机容量/MW | 1 900 | 900 | 900 |
所占比例/% | 51.4 | 24.3 | 24.3 |
热电厂参数 | 数值 |
---|---|
单位煤价格/(万元/t) | 0.06 |
排放率GSO2/(kg/t) | 2.7 |
排放率GCO2/(kg/t) | 1 878.9 |
排放率Gy/(kg/t) | 1.2 |
SO2当量δSO2/kg | 0.95 |
CO2当量δCO2/kg | 20 |
烟尘当量δy/kg | 2.18 |
排污征费指标/(万元/当量) | 0.000 12 |
供暖期天数/天 | 180 |
Tab. 2 Thermal power plant parameters
热电厂参数 | 数值 |
---|---|
单位煤价格/(万元/t) | 0.06 |
排放率GSO2/(kg/t) | 2.7 |
排放率GCO2/(kg/t) | 1 878.9 |
排放率Gy/(kg/t) | 1.2 |
SO2当量δSO2/kg | 0.95 |
CO2当量δCO2/kg | 20 |
烟尘当量δy/kg | 2.18 |
排污征费指标/(万元/当量) | 0.000 12 |
供暖期天数/天 | 180 |
蓄热罐参数 | 数值 |
---|---|
单位造价/(万元/m3) | 0.3 |
折现率 | 0.05 |
寿命/a | 20 |
低温回水温度/℃ | 70 |
高温供水温度/℃ | 150 |
蓄热温差ΔT/℃ | 80 |
容积率ε | 0.9 |
综合利用效率η | 0.95 |
蓄热损失K(i) | 0.005 |
年维护成本占其建设成本的百分比ξ | 0.005 |
Tab. 3 Heat storage tank parameters
蓄热罐参数 | 数值 |
---|---|
单位造价/(万元/m3) | 0.3 |
折现率 | 0.05 |
寿命/a | 20 |
低温回水温度/℃ | 70 |
高温供水温度/℃ | 150 |
蓄热温差ΔT/℃ | 80 |
容积率ε | 0.9 |
综合利用效率η | 0.95 |
蓄热损失K(i) | 0.005 |
年维护成本占其建设成本的百分比ξ | 0.005 |
机组 | 最大发电 功率/MW | 最小发电 功率/MW | 最大供热 功率/MW | a/(t⋅MW-2⋅h-1) | b/(t⋅MW-1⋅h-1) | c/(t⋅h-1) | 爬坡率Pup | 爬坡率Pdown |
---|---|---|---|---|---|---|---|---|
1 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
2 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
3 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
4 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
5 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
6 | 212 | 100 | 241 | 1.713 24×10-4 | 0.270 548 9 | 11.537 43 | 60 | 60 |
7 | 212 | 100 | 241 | 1.713 24×10-4 | 0.270 548 9 | 11.537 43 | 60 | 60 |
8 | 300 | 150 | 0 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
9 | 600 | 300 | 0 | 3.793 99×10-5 | 0.271 601 9 | 37.644 97 | 130 | 130 |
Tab. 4 Thermoelectric unit parameters
机组 | 最大发电 功率/MW | 最小发电 功率/MW | 最大供热 功率/MW | a/(t⋅MW-2⋅h-1) | b/(t⋅MW-1⋅h-1) | c/(t⋅h-1) | 爬坡率Pup | 爬坡率Pdown |
---|---|---|---|---|---|---|---|---|
1 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
2 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
3 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
4 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
5 | 323 | 150 | 357 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
6 | 212 | 100 | 241 | 1.713 24×10-4 | 0.270 548 9 | 11.537 43 | 60 | 60 |
7 | 212 | 100 | 241 | 1.713 24×10-4 | 0.270 548 9 | 11.537 43 | 60 | 60 |
8 | 300 | 150 | 0 | 7.587 99×10-5 | 0.271 601 9 | 18.822 48 | 80 | 80 |
9 | 600 | 300 | 0 | 3.793 99×10-5 | 0.271 601 9 | 37.644 97 | 130 | 130 |
时刻 | 电负荷/MW | 热负荷/MW | 风电功率/MW |
---|---|---|---|
01:00 | 1 964 | 1 770 | 401 |
02:00 | 1 946 | 1 770 | 441 |
03:00 | 1 926 | 1 770 | 463 |
04:00 | 1 898 | 1 770 | 480 |
05:00 | 1 913 | 1 770 | 486 |
06:00 | 1 943 | 1 770 | 475 |
07:00 | 2 062 | 1 770 | 475 |
08:00 | 2 205 | 1 770 | 436 |
09:00 | 2 293 | 1 770 | 425 |
10:00 | 2 363 | 1 770 | 388 |
11:00 | 2 369 | 1 770 | 323 |
12:00 | 2 392 | 1 770 | 310 |
13:00 | 2 258 | 1 770 | 336 |
14:00 | 2 253 | 1 770 | 316 |
15:00 | 2 300 | 1 770 | 301 |
16:00 | 2 336 | 1 770 | 361 |
17:00 | 2 388 | 1 770 | 371 |
18:00 | 2 520 | 1 770 | 391 |
19:00 | 2 467 | 1 770 | 425 |
20:00 | 2 394 | 1 770 | 433 |
21:00 | 2 364 | 1 770 | 446 |
22:00 | 2 260 | 1 770 | 450 |
23:00 | 2 150 | 1 770 | 448 |
24:00 | 2 054 | 1 770 | 416 |
Tab. 5 Electric load and wind power forecast power
时刻 | 电负荷/MW | 热负荷/MW | 风电功率/MW |
---|---|---|---|
01:00 | 1 964 | 1 770 | 401 |
02:00 | 1 946 | 1 770 | 441 |
03:00 | 1 926 | 1 770 | 463 |
04:00 | 1 898 | 1 770 | 480 |
05:00 | 1 913 | 1 770 | 486 |
06:00 | 1 943 | 1 770 | 475 |
07:00 | 2 062 | 1 770 | 475 |
08:00 | 2 205 | 1 770 | 436 |
09:00 | 2 293 | 1 770 | 425 |
10:00 | 2 363 | 1 770 | 388 |
11:00 | 2 369 | 1 770 | 323 |
12:00 | 2 392 | 1 770 | 310 |
13:00 | 2 258 | 1 770 | 336 |
14:00 | 2 253 | 1 770 | 316 |
15:00 | 2 300 | 1 770 | 301 |
16:00 | 2 336 | 1 770 | 361 |
17:00 | 2 388 | 1 770 | 371 |
18:00 | 2 520 | 1 770 | 391 |
19:00 | 2 467 | 1 770 | 425 |
20:00 | 2 394 | 1 770 | 433 |
21:00 | 2 364 | 1 770 | 446 |
22:00 | 2 260 | 1 770 | 450 |
23:00 | 2 150 | 1 770 | 448 |
24:00 | 2 054 | 1 770 | 416 |
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/ 万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 3 149 | 3 161 | 104 | 87 |
1 500 | 111 926 | 16 478 | 3 672 | 3 005 |
3 000 | 217 065 | 16 478 | 7 115 | 5 780 |
4 500 | 227 019 | 16 478 | 7 442 | 5 439 |
6 000 | 227 019 | 16 478 | 7 442 | 4 771 |
Tab. 6 Benefit analysis of wind power plant with installed capacity of 900 MW?h
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/ 万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 3 149 | 3 161 | 104 | 87 |
1 500 | 111 926 | 16 478 | 3 672 | 3 005 |
3 000 | 217 065 | 16 478 | 7 115 | 5 780 |
4 500 | 227 019 | 16 478 | 7 442 | 5 439 |
6 000 | 227 019 | 16 478 | 7 442 | 4 771 |
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 18 | 18 | 105 | 87 |
1 500 | 627 | 668 | 547 | -121 |
3 000 | 653 | 1 336 | 547 | -789 |
4 500 | 653 | 2 003 | 547 | -1 456 |
6 000 | 653 | 2 671 | 547 | -2 124 |
Tab. 7 Benefit analysis of wind power plant with installed capacity of 500 MW?h
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 18 | 18 | 105 | 87 |
1 500 | 627 | 668 | 547 | -121 |
3 000 | 653 | 1 336 | 547 | -789 |
4 500 | 653 | 2 003 | 547 | -1 456 |
6 000 | 653 | 2 671 | 547 | -2 124 |
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 6 340 | 18 | 210 | 192 |
1 500 | 133 013 | 668 | 4 391 | 3 723 |
3 000 | 133 013 | 1 336 | 4 391 | 3 056 |
4 500 | 133 013 | 2 003 | 4 391 | 2 388 |
6 000 | 133 013 | 2 671 | 4 391 | 1 720 |
Tab. 8 Benefit analysis of wind power plant with installed capacity of 1 500 MW?h
蓄热罐容量/(MW∙h) | 弃风消纳量/(MW∙h) | 方案成本/万元 | 方案效益/万元 | 总收益/ 万元 |
---|---|---|---|---|
40 | 6 340 | 18 | 210 | 192 |
1 500 | 133 013 | 668 | 4 391 | 3 723 |
3 000 | 133 013 | 1 336 | 4 391 | 3 056 |
4 500 | 133 013 | 2 003 | 4 391 | 2 388 |
6 000 | 133 013 | 2 671 | 4 391 | 1 720 |
1 | 徐飞,闵勇,陈磊,等 .包含大容量储热的电-热联合系统[J].中国电机工程学报,2014,34(29):5063-5072. doi:10.13334/j.0258-8013.pcsee.2014.29.007 |
XU F, MIN Y, CHEN L,et al .Combined electricity-heat operation system containing large capacity thermal energy storage[J].Proceedings of the CSEE,2014,34(29):5063-5072. doi:10.13334/j.0258-8013.pcsee.2014.29.007 | |
2 | 李卫东,贺鸿鹏 .考虑风电消纳的源-荷协同优化调度策略[J].发电技术,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 |
LI W D, HE H P .Source-load cooperative optimization dispatch strategy considering wind power accommodation[J].Power Generation Technology,2020,41(2):126-130. doi:10.12096/j.2096-4528.pgt.18266 | |
3 | 王瀚琳,刘洋,许立雄,等 .考虑风电消纳的区域多微网分层协调优化模型[J].电力建设,2020,41(8):87-98. doi:10.12204/j.issn.1000-7229.2020.08.011 |
WANG H L, LIU Y, XU L X,et al .Research on hierarchical coordinated optimization model of multi-microgrid system considering wind power consumption[J].Electric Power Construction,2020,41(8):87-98. doi:10.12204/j.issn.1000-7229.2020.08.011 | |
4 | 帅挽澜,朱自伟,李雪萌,等 .考虑风电消纳的综合能源系统“源-网-荷-储”协同优化运行[J].电力系统保护与控制,2021,49(19):18-26. doi:10.19783/j.cnki.pspc.210037 |
SHUAI W L, ZHU X W, LI X M,et al .“Source-network-load-storage” coordinated optimization operation for an integrated energy system considering wind power consumption[J].Power System Protection and Control,2021,49(19):18-26. doi:10.19783/j.cnki.pspc.210037 | |
5 | 卢炳文,魏震波,魏平桉,等 .考虑消纳风电的区域综合能源系统电转气与储能设备优化配置[J].智慧电力,2021,49(5):7-14. doi:10.3969/j.issn.1673-7598.2021.05.003 |
LU B W, WEI Z B, WEI P A,et al .Optimal configuration of PtG and energy storage equipment in regional integrated energy system considering wind power consumption[J].Smart Power,2021,49(5):7-14. doi:10.3969/j.issn.1673-7598.2021.05.003 | |
6 | HUANG X, XU Z, SUN Y,et al .Heat and power load dispatching considering energy storage of district heating system and electric boilers[J].Journal of Modern Power Systems and Clean Energy,2018,6:992-1003. doi:10.1007/s40565-017-0352-6 |
7 | 吕泉,陈天佑,王海霞,等 .配置储热后热电机组调峰能力分析[J].电力系统自动化,2014,38(11):34-41. doi:10.7500/AEPS20130724002 |
LV Q, CHEN T Y, WANG H X,et al . Analysis on peak-load regulation ability of cogeneration unit with heat accumulator[J].Automation of Electric Power Systems,2014,38(11):34-41. doi:10.7500/AEPS20130724002 | |
8 | 吕泉,王海霞,陈天佑,等 .考虑风电不确定性的热电厂蓄热罐运行策略[J].电力系统自动化,2015,39(14):23-29. doi:10.7500/AEPS20140829001 |
LV Q, WANG H X, CHEN T Y,et al .Operation strategies of heat accumulator in combined heat and power plant with uncertain wind power[J].Automation of Electric Power Systems,2015,39(14):23-29. doi:10.7500/AEPS20140829001 | |
9 | 于炎娟,陈红坤,姜欣,等 .促进风电消纳的蓄热罐运行策略[J].电力系统自动化,2017,41(7):37-43. doi:10.7500/AEPS20160510006 |
YU Y J, CHEN H K, JIANG X,et al .Operation strategy for heat storage tank to improve wind power accommodation[J].Automation of Electric Power Systems,2017,41(7):37-43. doi:10.7500/AEPS20160510006 | |
10 | 戴远航,陈磊,闵勇,等 .风电场与含储热的热电联产联合运行的优化调度[J].中国电机工程学报,2017,37(12):3470-3479. doi:10.13334/j.0258-8013.pcsee.162644 |
DAI Y H, CHEN L, MIN Y,et al .Optimal dispatch for joint operation of wind farm and combined heat and power plant with thermal energy storage[J].Proceedings of the CSEE,2017,37(12):3470-3479. doi:10.13334/j.0258-8013.pcsee.162644 | |
11 | 顾泽鹏,康重庆,陈新宇,等 .考虑热网约束的电热能源集成系统运行优化及其风电消纳效益分析[J].中国电机工程学报,2015,35(14):3596-3604. doi:10.13334/j.0258-8013.pcsee.2015.14.014 |
GU Z P, KANG C Q, CHEN X Y,et al .Operation optimization of integrated power and heat energy systems and the benefit on wind power accommodation considering heating network constraints[J].Proceedings of the CSEE,2015,35(14):3596-3604. doi:10.13334/j.0258-8013.pcsee.2015.14.014 | |
12 | 吕泉,李玲,朱全胜,等 .三种弃风消纳方案的节煤效果与国民经济性比较[J].电力系统自动化,2015,39(7):75-83. doi:10.7500/AEPS20140125001 |
LV Q, LI L, ZHU Q S,et al .Comparison of coal-saving effect and national economic indices of three feasible curtailed wind power accommodating strategies[J].Automation of Electric Power Systems,2015,39(7):75-83. doi:10.7500/AEPS20140125001 | |
13 | 陈磊,徐飞,王晓,等 .储热提升风电消纳能力的实施方式及效果分析[J].中国电机工程学报,2015,35(17):4283-4290. |
CHE L, XU F, WANG X,et al .Implementation and effect of thermal storage in improving wind power accommodation[J].Proceedings of the CSEE,2015,35(17):4283-4290. | |
14 | 于婧,孙宏斌,沈欣炜 .考虑储热装置的风电-热电机组联合优化运行策略[J].电力自动化设备,2017,37(6):139-145. |
YU J, SUN H B, SHEN X W .Optimal operating strategy of integrated power system with wind farm, CHP unit and heat storage device[J].Electric Power Automation Equipment,2017,37(6):139-145. | |
15 | 周任军,武浩然,冯剑,等 .考虑虚拟电厂经济运行的蓄热罐定容配置[J].中国电力,2019,52(11):167-174. |
ZHOU R J, WU H R, FENG J,et al .Determining heat storage tank capacities in consideration of the economic operation of virtual power plant[J].Electric Power,2019,52(11):167-174. | |
16 | 葛维春,李军徽,马腾,等 .提高风电接纳的储热系统容量优化配置[J].电工电能新技术,2019,39(4):64-70. doi:10.1109/ipemc-ecceasia48364.2020.9367913 |
GE W C, LI J H, MA T,et al .Optimal allocation of heat storage system capacity for increasing wind power integration[J].Advanced Technology of Electrical Engineering and Energy,2019,39(4):64-70. doi:10.1109/ipemc-ecceasia48364.2020.9367913 | |
17 | 田雪枫 .基于博弈论的热电厂内蓄热设备容量规划方法[D].北京:华北电力大学,2018. |
TIAN X F .Capacity planning method of heat storage equipment in thermal power plant based on game theory[D].Beijing:North China Electric Power University,2018. | |
18 | LADIGE D, THOMAS B, WIDMANN C .Intelligent management of the heat storage tank for production of electricity on demand using CHP units[J].Energy Procedia,2015,73:239-243. doi:10.1016/j.egypro.2015.07.678 |
19 | SARTOR K, DEWALLEF P .Integration of heat storage system into district heating networks fed by a biomass CHP plant[J].Journal of Energy Storage,2018,15:350-358. doi:10.1016/j.est.2017.12.010 |
20 | 曹阳,李鹏,袁越,等 .基于时序仿真的新能源消纳能力分析及其低碳效益评估[J].电力系统自动化,2014,38(17):60-66. doi:10.7500/AEPS20140329002 |
CAO Y, LI P, YUAN Y,et al .Analysis on accommodating capability of renewable energy and assessment on low-carbon benefits based on time sequence simulation[J].Automation of Electric Power Systems,2014,38(17):60-66. doi:10.7500/AEPS20140329002 | |
21 | 李纯 .面向弃风消纳的热电厂最优蓄热容量确定研究[D].大连:大连理工大学,2016. |
LI C .Study on Determination of Optimal Regenerative Capacity of Thermal Power Plant for Discarding Wind[D].Dalian:Dalian University of Technology,2016. | |
22 | PHILIPP V, KOCH B, GEORGE G,et al. Heuristic approach for the economic optimisation of combined heat and power (CHP) plants:operating strategy, heat storage and power[J].Energy,2017,121:66-77. doi:10.1016/j.energy.2016.12.133 |
23 | 董学会 .配置蓄热装置的供热机组灵活性分析[D].北京:华北电力大学,2019. doi:10.29252/jafm.13.01.30063 |
DONG X H .Flexibility analysis of heating units equipped with heat storage devices[D].Beijing:North China Electric Power University,2019. doi:10.29252/jafm.13.01.30063 | |
24 | 朱倩雯 .多能互补建筑能源系统电热储能容量优化配置[D].济南:山东大学,2018. doi:10.1016/j.egypro.2019.01.183 |
ZHU Q W .Optimal allocation of electrothermal energy storage capacity of multi-energy complementary building energy system[D].Jinan:Sandong University,2018. doi:10.1016/j.egypro.2019.01.183 | |
25 | 董文博,顾秀芳,陈艳宁 .风电并网价值分析[J].发电技术,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 |
DONG W B, GU X F, CHEN Y N .Value analysis of wind power integration[J].Power Generation Technology,2020,41(3):320-327. doi:10.12096/j.2096-4528.pgt.19117 | |
26 | 陈天佑 .基于储热的热电厂消纳风电方案研究[D].大连:大连理工大学,2014. |
CHEN T Y .Study on wind power accommodation scheme of thermal power plant based on heat storage[D].Dalian:Dalian University of Technology,2014. |
[1] | Zhan LI, Zhenyong YANG, Lei LIU, Zhensan CHEN, Weiming JI, Feng HONG. Analysis of the Influence of Furnace Side Heat Storage Coefficient on Primary Frequency Modulation Capacity Under Deep Modulation Condition of Thermal Power Unit [J]. Power Generation Technology, 2024, 45(2): 226-232. |
[2] | Anan ZHANG, Qi ZHOU, Qian LI, Ning DING, Chao YANG, Yan MA. Research Status and Prospect of CO2 Accounting Technology in Thermal Power Plants Under the Goal of Dual Carbon [J]. Power Generation Technology, 2024, 45(1): 51-61. |
[3] | Guoqin ZHAO, Maowei LAN, Yang LI, Yuanxiang ZHOU, Zhengwei JIANG, Yunhua GAN. Study on Optimization of Prediction Model of Flue Gas Oxygen Content in Thermal Power Plant Based on Least Squares Support Vector Machine [J]. Power Generation Technology, 2023, 44(4): 534-542. |
[4] | Lifeng ZHANG, Jing LI, Zhi WANG. Reconstruction of Temperature Distribution by Acoustic Tomography Based on Principal Component Analysis and Deep Neural Network [J]. Power Generation Technology, 2023, 44(3): 399-406. |
[5] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[6] | Cunqin RUAN, Zhigang HONG, Peican LAI, Jianhua ZHANG, Xikun LIN, Jiang ZHOU, Qianwei FENG, Yang ZHANG. Research on Performance Prediction of Coal-fired Power Plant Denitrification Device Based on Online Monitoring Data [J]. Power Generation Technology, 2023, 44(1): 100-106. |
[7] | Dong GUO, Yinjia JIN, Yue ZHU. Design and Construction of Wastewater Zero Liquid Discharge Treatment System for Pilot Experiment in Thermal Power Plant [J]. Power Generation Technology, 2021, 42(3): 357-362. |
[8] | Jinlong SUN. Optimization Study of Denitrification System for 330 MW Coal-fired Thermal Power Unit [J]. Power Generation Technology, 2019, 40(6): 570-579. |
[9] | Rongrong ZHAI,Yulong WANG,Hao WU. Model Validation and Stacking Optimization Based on Packed Bed Phase Change Thermal Storage [J]. Power Generation Technology, 2019, 40(3): 220-229. |
[10] | Fei SUN,Ye LIU,Gaosheng WEI,Wenjiang YOU. Scheme and Economic Analysis of Waste Heat Utilization of Screw Air Compressor in Thermal Power Plant [J]. Power Generation Technology, 2018, 39(3): 240-243. |
[11] | Yangjun LI,Zichun HE,Qiang ZHANG,Wei TU. Test and Evaluation of Power Quality in Thermal Power Plant [J]. Power Generation Technology, 2018, 39(2): 135-139. |
[12] | BRUCEN. Anderson,Xiang HUANG,Haixiang SUN,Fuhua WANG. Solar Heat Plant for a Newly Brayton Tower Circulation [J]. Power Generation Technology, 2018, 39(1): 37-42. |
[13] | ZHOU Yuhao, ZHANG Haizhen, SONG Shengnan. Research on Key Technologies of Multi Energy Complementary Distributed Energy Experimental Platform System [J]. Power Generation Technology, 2017, 38(6): 5-9,37. |
[14] | ZHANG Zheng-yu. Design of Ice Thermal Storage System in Certain Project [J]. Power Generation Technology, 2017, 38(1): 90-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||