Power Generation Technology ›› 2024, Vol. 45 ›› Issue (1): 99-105.DOI: 10.12096/j.2096-4528.pgt.22046
• Power Generation and Environmental Protection • Previous Articles Next Articles
Daijun CHEN, Lili CHEN, Yangtao LI
Received:
2022-06-02
Published:
2024-02-29
Online:
2024-02-29
Contact:
Lili CHEN
Supported by:
CLC Number:
Daijun CHEN, Lili CHEN, Yangtao LI. Electrical Power Output Prediction of Combined Cycle Power Station[J]. Power Generation Technology, 2024, 45(1): 99-105.
统计值 | AT/℃ | V/kPa | AP/kPa | RH/% | EP/MW |
---|---|---|---|---|---|
平均值 | 19.65 | 72.23 | 101.326 | 73.31 | 454.37 |
方差 | 7.45 | 16.90 | 0.594 | 14.60 | 17.07 |
最小值 | 1.81 | 33.73 | 99.289 | 25.56 | 420.26 |
最大值 | 37.11 | 108.47 | 103.330 | 100.16 | 495.76 |
Tab. 1 Statistical values of each characteristic
统计值 | AT/℃ | V/kPa | AP/kPa | RH/% | EP/MW |
---|---|---|---|---|---|
平均值 | 19.65 | 72.23 | 101.326 | 73.31 | 454.37 |
方差 | 7.45 | 16.90 | 0.594 | 14.60 | 17.07 |
最小值 | 1.81 | 33.73 | 99.289 | 25.56 | 420.26 |
最大值 | 37.11 | 108.47 | 103.330 | 100.16 | 495.76 |
方法 | MAE | RMSE | MAPE | ME |
---|---|---|---|---|
文献[ | 2.818 | 3.787 | — | — |
原始特征+XGBoost | 2.252 | 3.086 | 0.497% | -0.019 |
KPCA-XGB-FS | 2.021 | 2.846 | 0.446% | -0.02 |
Tab. 2 Performance of each method
方法 | MAE | RMSE | MAPE | ME |
---|---|---|---|---|
文献[ | 2.818 | 3.787 | — | — |
原始特征+XGBoost | 2.252 | 3.086 | 0.497% | -0.019 |
KPCA-XGB-FS | 2.021 | 2.846 | 0.446% | -0.02 |
1 | 孙喜春 .关于发展燃气-蒸汽联合循环发电的探讨[J].企业技术开发,2013,32(14):93-94. |
SUN X C .Discussion on the development of gas-steam combined cycle power generation[J].Technological Development of Enterprise,2013,32(14):93-94. | |
2 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
3 | 刘兰华,王瑞林,洪慧 .塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J].发电技术,2021,42(4):517-524. doi:10.12096/j.2096-4528.pgt.21081 |
LIU L H, WANG R L, HONG H .Design of calcium-based carbon capture system for gas-steam combined cycle assisted by solar thermal tower[J].Power Generation Technology,2021,42(4):517-524. doi:10.12096/j.2096-4528.pgt.21081 | |
4 | 张治忠,陈继平,谭学谦,等 .天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价[J].南方能源建设,2023,10(2):55-61. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 |
ZHANG Z Z, CHEN J P, TAN X Q,et al .Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant[J].Southern Energy Construction,2021,42(2):403-409. doi:10.16516/j.gedi.issn2095-8676.2023.02.008 | |
5 | 成珂,孙琦琦,马晓瑶 .基于主成分回归分析的气象因子对光伏发电量的影响[J].太阳能学报,2021, 42(2):403-409. doi:10.19912/j.0254-0096.tynxb.2018-0933 |
CHENG K, SUN Q Q, MA X Y .Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J].Acta Energiae Solaris Sinica,2021,42(2):403-409. doi:10.19912/j.0254-0096.tynxb.2018-0933 | |
6 | 仲仕晶,赵书杰 .多因素耦合对光伏发电性能影响的实验研究[J].科学技术与工程,2020,20(7):2727-2732. |
ZHONG S J, ZHAO S J .Experimental study on the effect of multi-factor coupling on photovoltaic power generation performance[J].Science Technology and Engineering,2020,20(7):2727-2732. | |
7 | 张玉, 莫寒, 张烈平 .基于模糊支持向量机的光伏发电量预测[J]. 热力发电,2017,46(1):116-120. doi:10.3969/j.issn.1002-3364.2017.01.116 |
ZHANG Y, MO H, ZHANG L P .Prediction of photovoltaic power generation based on fuzzy support vector machine[J].Thermal Power Generation,2017, 46(1):116-120. doi:10.3969/j.issn.1002-3364.2017.01.116 | |
8 | 陈国栋,罗素芹,刘文斌,等 .基于改进相似日的光伏系统日发电量预测[J].照明工程学报,2018,29(3):115-119. doi:10.3969/j.issn.1004-440X.2018.03.023 |
CHEN G D, LUO S Q, LIU W B,et al .Daily power generation forecast of photovoltaic system based on improved similar days[J].China Illuminating Engineering Journal,2018,29(3):115-119. doi:10.3969/j.issn.1004-440X.2018.03.023 | |
9 | 赵亮,刘友波,余莉娜,等 .基于深度信念网络的光伏电站短期发电量预测[J].电力系统保护与控制,2019,47(18):11-19. |
ZHAO L, LIU Y B, YU L N,et al .Short-term power generation forecast of photovoltaic power station based on deep belief network[J].Power System Protection and Control,2019,47(18):11-19. | |
10 | 周灵杰,李博彤,汪鸿,等 .基于改进神经网络和能量守恒法的热电联产机组发电量计算[J].热力发电,2020,49(1):70-77. doi:10.19666/j.rlfd.201907183 |
ZHOU L J, LI B T, WANG H,et al .Calculation of power generation of cogeneration units based on improved neural network and energy conservation method[J].Thermal Power Generation,2020,49(1):70-77. doi:10.19666/j.rlfd.201907183 | |
11 | 张成,白建波,兰康,等 .基于数据挖掘和遗传小波神经网络的光伏电站发电量预测[J].太阳能学报,2021,42(3):375-382. doi:10.19912/j.0254-0096.tynxb.2019-0867 |
ZHANG C, BAI J B, LAN K,et al .Prediction of photovoltaic power plant power generation based on data mining and genetic wavelet neural network[J].Acta Energiae Solaris Sinica,2021,42(3):375-382. doi:10.19912/j.0254-0096.tynxb.2019-0867 | |
12 | 黄树帮,陈耀,金宇清 .碳中和背景下多通道特征组合超短期风电功率预测[J].发电技术,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 |
HUANG S B, CHEN Y, JIN Y Q .Ultra-short-term wind power prediction with multi-channel feature combination under carbon neutrality[J].Power Generation Technology,2021,42(1):60-68. doi:10.12096/j.2096-4528.pgt.20103 | |
13 | 朱芳 .基于KPCA与混合蛙跳算法的并网光伏电站发电量预测模型研究[J].可再生能源,2018,36(2):236-240. doi:10.3969/j.issn.1671-5292.2018.02.012 |
ZHU F .Research on power generation forecast model of grid-connected photovoltaic power station based on KPCA and hybrid leapfrog algorithm[J].Renewable Energy Resources,2018,36(2):236-240. doi:10.3969/j.issn.1671-5292.2018.02.012 | |
14 | 梁胜杰,张志华,崔立林 .主成分分析法与核主成分分析法在机械噪声数据降维中的应用比较[J].中国机械工程,2011,22(1):80-83. |
LIANG S J, ZHANG Z H, CUI L L .Application comparison of principal component analysis method and kernel principal component analysis method in dimension reduction of mechanical noise data[J].China Mechanical Engineering,2011,22(1):80-83. | |
15 | 郭廷华,赵帅 .基于KPCA-WOA-KELM的岩爆烈度预测[J].河北工程大学学报(自然科学版),2021,38(2):1-7. |
GUO T H, ZHAO S .Rockburst intensity prediction based on KPCA-WOA-KELM[J].Journal of Hebei University of Engineering (Natural Science Edition),2021,38(2):1-7. | |
16 | ANOWAR F, SADAOUI S, SELIM B .Conceptual and empirical comparison of dimensionality reduction algorithms (PCA,KPCA,LDA,MDS,SVD,LLE,ISOMAP,LE,ICA,t-SNE)[J].Computer Science Review,2021,40:100378. doi:10.1016/j.cosrev.2021.100378 |
17 | HARIS M J, GANESH B C, GOWRI S M .Performance analysis of dimensionality reduction using PCA,KPCA and LLE for ECG signals[C]//IOP Conference Series:Materials Science and Engineering.Strasbourg,France:IOP,2021:1084-1092. doi:10.1088/1757-899x/1084/1/012005 |
18 | YONG X, DAVID Z, FENGXI S,et al .A method for speeding up feature extraction based on KPCA[J].Neurocomputing,2006,70(4):1056-1061. doi:10.1016/j.neucom.2006.09.005 |
19 | 吴彤,高彩霞,付子义 .基于改进EEMD、KPCA与RBF结合的变负载下滚动轴承故障程度识别[J].制造业自动化,2018,40(8):63-67. doi:10.3969/j.issn.1009-0134.2018.08.017 |
WU T,GAO C X,FU Z Y,Fault degree identification of rolling bearing under variable load based on the combination of improved EEMD,KPCA and RBF[J].Manufacturing Automation,2018,40(8):63-67. doi:10.3969/j.issn.1009-0134.2018.08.017 | |
20 | 史佳琪,张建华 .基于多模型融合Stacking集成学习方式的负荷预测方法[J].中国电机工程学报,2019,39(14):4032-4042. doi:10.13334/j.0258-8013.pcsee.181510 |
SHI J Q, ZHANG J H .Load forecasting method based on multi-model fusion stacking ensemble learning method[J].Proceedings of the CSEE,2019,39(14):4032-4042. doi:10.13334/j.0258-8013.pcsee.181510 | |
21 | 朱江行,邹晓松,熊炜,等 .基于Prophet与XGBoost混合模型的短期负荷预测[J].现代电力,2021,38(3):325-331. doi:10.19725/j.cnki.1007-2322.2020.0321 |
ZHU J X, ZOU X S, XIONG W,et al .Short-term load forecasting based on Prophet and XGBoost hybrid model[J].Modern Electric Power,2021,38(3):325-331. doi:10.19725/j.cnki.1007-2322.2020.0321 | |
22 | 王桂兰,赵洪山,米增强 .XGBoost算法在风机主轴承故障预测中的应用[J].电力自动化设备,2019,39(1):73-77. doi:10.16081/j.issn.1006-6047.2019.01.011 |
WANG G L, ZHAO H S, MI Z Q .Application of XGBoost algorithm in fault prediction of fan main bearing[J].Electric Power Automation Equipment,2019,39(1):73-77. doi:10.16081/j.issn.1006-6047.2019.01.011 | |
23 | TÜFEKCI P .Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods[J].International Journal of Electrical Power & Energy Systems,2014,60:126-140. doi:10.1016/j.ijepes.2014.02.027 |
[1] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[2] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[3] | Lingxing LU,Honglu ZHU,Weiwei LIAN,Songyuan DAI,Jianxi YAO. Application of FCM Method in Data Division of Photovoltaic Array Fault Samples [J]. Power Generation Technology, 2018, 39(2): 188-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||