Power Generation Technology ›› 2023, Vol. 44 ›› Issue (6): 790-799.DOI: 10.12096/j.2096-4528.pgt.23094
• Virtual Power Plant Planning, Scheduling and Control Technology • Previous Articles Next Articles
Xiaoqiang JIA1, Yongbiao YANG2, Jiao DU2, Haiqing GAN3, Nan YANG4
Received:
2023-08-03
Published:
2023-12-31
Online:
2023-12-28
Supported by:
CLC Number:
Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change[J]. Power Generation Technology, 2023, 44(6): 790-799.
类别 | 参数 | 数值 |
---|---|---|
经济 | 热电联产系统发电维护成本/(元/kW) | 0.03 |
热电联产系统供热维护成本/(元/kW) | 0.03 | |
补燃锅炉供热维护成本/(元/kW) | 0.02 | |
储能元件充放电成本/(元/kW) | 0.02 | |
天然气价格/(元/m3) | 2.74 | |
工程 | 热电联产系统额定发电功率/MW | 2.50 |
热电联产系统额定供热功率/MW | 2.00 | |
光伏额定功率/MW | 1.00 | |
储能设备额定功率/MW | 1.00 | |
余热锅炉效率 | 0.78 | |
补燃锅炉效率 | 0.85 |
Tab. 1 System patameters
类别 | 参数 | 数值 |
---|---|---|
经济 | 热电联产系统发电维护成本/(元/kW) | 0.03 |
热电联产系统供热维护成本/(元/kW) | 0.03 | |
补燃锅炉供热维护成本/(元/kW) | 0.02 | |
储能元件充放电成本/(元/kW) | 0.02 | |
天然气价格/(元/m3) | 2.74 | |
工程 | 热电联产系统额定发电功率/MW | 2.50 |
热电联产系统额定供热功率/MW | 2.00 | |
光伏额定功率/MW | 1.00 | |
储能设备额定功率/MW | 1.00 | |
余热锅炉效率 | 0.78 | |
补燃锅炉效率 | 0.85 |
1 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al. Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J]. Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
2 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
3 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
4 | 曾小青,唐超雯 .分时电价环境下计及新能源消纳的虚拟电厂优化调度研究[J].电力科学与技术学报,2023,38(3):24-34. |
ZENG X Q, TANG C W .Research on optimization of virtual power plants dispatch by considering the consumption of new energy under time-of-use electricity price environment[J].Journal of Electric Power Science and Technology,2023,38(3):24-34. | |
5 | 刘佳楠,李鹏,杨德昌 .基于风光荷储联合优化的虚拟电厂竞价策略[J].电力工程技术,2017,36(6):32-37. doi:10.3969/j.issn.1009-0665.2017.06.006 |
LIU J N, LI P, YANG D C .Bidding strategy analysis of virtual power plant based on joint operation of wind-solar-load-storage system[J].Electric Power Engineering Technology,2017,36(6):32-37. doi:10.3969/j.issn.1009-0665.2017.06.006 | |
6 | 单葆国,刘青,张莉莉,等 .新形势下“十四五”后三年中国电力需求形势研判[J].中国电力,2023,56(3):1-11. |
SHAN B G, LIU Q, ZHANG L L,et al .Analysis of China’s power demand situation in the last three years of the “14th Five-Year Plan” under the new situation[J].Electric Power,2023,56(3):1-11. | |
7 | 高洪超,王宣元,邱小燕,等 .新型电力系统环境下的虚拟电厂辅助调峰市场机制及其商业模式设计[J].太阳能学报,2023,44(3):376-385. doi:10.19912/j.0254-0096.tynxb.2021-1284 |
GAO H C, WANG X Y, QIU X Y,et al .Ramping energy market mechanism and its business model of virtual power plants oriented to new power system[J].Acta Energiae Solaris Sinica,2023,44(3):376-385. doi:10.19912/j.0254-0096.tynxb.2021-1284 | |
8 | 郁海彬,董帅,陆增洁,等 .新型电力系统下储能参与电力调峰调频辅助市场的竞标策略[J].中国电力,2023,56(8):48-60. |
YU H B, DONG S, LU Z J,et al .Bidding strategy of energy storage participating in the auxiliary market of peak and frequency modulation in new power system[J].Electric Power,2023,56(8):48-60. | |
9 | 宋天琦,马韵婷,张智慧 .光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析[J].发电技术,2023,44(4):465-472. doi:10.12096/j.2096-4528.pgt.22181 |
SONG T Q, MA Y T, ZHANG Z H .Operation mode and economy of photovoltaic coupled water electrolysis hydrogen production system as a kind of virtual power plant resource[J].Power Generation Technology,2023,44(4):465-472. doi:10.12096/j.2096-4528.pgt.22181 | |
10 | 丛琳,王冰,孙毅,等 .考虑碳排放和需求侧多能源响应的虚拟电厂低碳经济运行策略[J/OL].电测与仪表:1-12.(2023-01-16)[2023-07-08].. |
CONG L, WANG B, SUN Y,et al .Low-carbon and economical operation strategy of virtual power plant considering carbon emission and integrated energy response in demand side [J/OL].Electrical Measurement & Instrumentation:1-12[2023-07-08].. | |
11 | 元志伟,于松源,房方,等 .考虑高维不确定性的热电联产虚拟电厂优化调度[J].动力工程学报,2023,43(2):194-204. |
YUAN Z W, YU S Y, FANG F,et al .Optimal scheduling of combined heat and power-virtual power plant considering high-dimensional uncertainty[J].Journal of Chinese Society of Power Engineering,2023,43(2):194-204. | |
12 | CHANG W, DONG W, ZHAO L,et al .Model predictive control based energy collaborative optimization management for energy storage system of virtual power plant[C]//2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES).Xuzhou,China:IEEE,2020:112-115. doi:10.1109/dcabes50732.2020.00037 |
13 | YAN X, GAO C, SONG M,et al .An IGDT-based day-ahead co-optimization of energy and reserve in a VPP considering multiple uncertainties[J].IEEE Transactions on Industry Applications,2022,58(3):4037-4049. doi:10.1109/tia.2022.3152454 |
14 | 张明光,赵文渊,李鹏程 .多能源互补的虚拟电厂低碳调度研究[J].工业仪表与自动化装置,2022(5):76-83. |
ZHANG M G, ZHAO W Y, LI P C .Research on low-carbon scheduling of virtual power plants with complementary multi-energy sources[J].Industrial Instrumentation & Automation,2022(5):76-83. | |
15 | 汪洋叶,赵力航,常伟光,等 .基于模型预测控制的虚拟电厂储能系统能量协同优化调控方法[J].智慧电力,2021,49(7):16-22. doi:10.3969/j.issn.1673-7598.2021.07.004 |
WANG Y Y, ZHAO L H, CHANG W G,et al .Model predictive control based energy collaborative optimization control method for energy storage system of virtual power plant[J].Smart Power,2021,49(7):16-22. doi:10.3969/j.issn.1673-7598.2021.07.004 | |
16 | 黄勤坤,邱瑜,王飞,等 .考虑多重不确定性的虚拟电厂随机优化调度[J].电网与清洁能源,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 |
HUANG Q K, QIU Y, WANG F,et al .Stochastic optimal scheduling of virtual power plants considering multiple uncertainties[J].Power System and Clean Energy,2022,38(11):8-16. doi:10.3969/j.issn.1674-3814.2022.11.002 | |
17 | 张大海,贠韫韵,王小君,等 .计及风光不确定性的新能源虚拟电厂多时间尺度优化调度[J].太阳能学报,2022,43(11):529-537. |
ZHANG D H, YUN Y Y, WANG X J,et al .Multi-time scale of new energy scheduling optimization for virtual power plant considering uncertainty of wind power and photovoltaic power[J].Acta Energiae Solaris Sinica,2022,43(11):529-537. | |
18 | 卢赓,邓婧,王渝红,等 .电力系统受极端天气的影响分析及其适应策略[J].发电技术,2021,42(6):751-764. doi:10.12096/j.2096-4528.pgt.21059 |
LU G, DENG J, WANG Y H,et al .Analysis of power system affected by extreme weather and its adaptive strategy[J].Power Generation Technology,2021,42(6):751-764. doi:10.12096/j.2096-4528.pgt.21059 | |
19 | 吴何来,李汪繁,丁先 .“双碳”目标下我国碳捕集、利用与封存政策分析及建议[J].电力建设,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 |
WU H L, LI W F, DING X .Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J].Electric Power Construction,2022,43(4):28-37. doi:10.12204/j.issn.1000-7229.2022.04.004 | |
20 | 苏靖程,王志强,屈江江,等 .基于BP神经网络和支持向量回归的燃煤电厂空气预热器压差预测[J].发电技术,2023,44(4):550-556. doi:10.12096/j.2096-4528.pgt.22160 |
SU J C, WANG Z Q, QU J J,et al .Pressure difference prediction of air preheater in coal-fired power plant based on BP neural network and support vector regression[J].Power Generation Technology,2023,44(4):550-556. doi:10.12096/j.2096-4528.pgt.22160 |
[1] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[2] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[3] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[4] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[5] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[6] | Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism [J]. Power Generation Technology, 2023, 44(5): 634-644. |
[7] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[8] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[9] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[10] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[11] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[12] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
[13] | Geng LU, Jing DENG, Yuhong WANG, Jing CAO, Yunfeng YUE. Analysis of Power System Affected by Extreme Weather and Its Adaptive Strategy [J]. Power Generation Technology, 2021, 42(6): 751-764. |
[14] | Shijie TANG,Qiang LU,Yanchao QU,Cuitao REN,Yongping YANG. Catalyst Volume Design in SCR Denitrification System Based on Genetic Algorithm Optimized BP Neural Network [J]. Power Generation Technology, 2019, 40(3): 246-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||