Power Generation Technology ›› 2022, Vol. 43 ›› Issue (4): 645-654.DOI: 10.12096/j.2096-4528.pgt.21079
• Power Generation and Environmental Protection • Previous Articles Next Articles
Qiyao ZUO1, Zhen TANG2, Huiyong LI2, Ying ZHANG1, Jiangfeng WANG1
Received:
2021-06-11
Published:
2022-08-31
Online:
2022-09-06
Supported by:
CLC Number:
Qiyao ZUO, Zhen TANG, Huiyong LI, Ying ZHANG, Jiangfeng WANG. Overview on the Current Situation of Steam Turbine Low-Pressure Cylinder Zero-Output Technology Under Background of Power Grid Peak Regulation[J]. Power Generation Technology, 2022, 43(4): 645-654.
参数 | 锅炉最小 出力工况 | 锅炉额定 出力工况 | 低压缸 零出力工况 |
---|---|---|---|
发电功率/MW | 200.32 | 248.77 | 110.81 |
电负荷出力系数/% | 57.2 | 71.1 | 31.7 |
主蒸汽流量/(t/h) | 885.7 | 1053.0 | 579.0 |
锅炉出力系数/% | 84.1 | 100.0 | 55.0 |
主蒸汽压力/MPa | 14.74 | 16.67 | 10.04 |
主蒸汽温度/℃ | 538.0 | 538.0 | 532.6 |
再热热段蒸汽流量/(t/h) | 737.75 | 863.61 | 492.95 |
再热热段蒸汽压力/MPa | 2.80 | 3.26 | 1.85 |
再热热段蒸汽温度/℃ | 538.0 | 538.0 | 511.6 |
低压缸排汽流量/(t/h) | 180.50 | 261.89 | 20.00 |
供热量/MW | 288.0 | 288.0 | 288.0 |
Tab. 1 Comparison of constant heat supply in accordance with peak regulation parameters of a 350 MW unit under different working conditions
参数 | 锅炉最小 出力工况 | 锅炉额定 出力工况 | 低压缸 零出力工况 |
---|---|---|---|
发电功率/MW | 200.32 | 248.77 | 110.81 |
电负荷出力系数/% | 57.2 | 71.1 | 31.7 |
主蒸汽流量/(t/h) | 885.7 | 1053.0 | 579.0 |
锅炉出力系数/% | 84.1 | 100.0 | 55.0 |
主蒸汽压力/MPa | 14.74 | 16.67 | 10.04 |
主蒸汽温度/℃ | 538.0 | 538.0 | 532.6 |
再热热段蒸汽流量/(t/h) | 737.75 | 863.61 | 492.95 |
再热热段蒸汽压力/MPa | 2.80 | 3.26 | 1.85 |
再热热段蒸汽温度/℃ | 538.0 | 538.0 | 511.6 |
低压缸排汽流量/(t/h) | 180.50 | 261.89 | 20.00 |
供热量/MW | 288.0 | 288.0 | 288.0 |
工况 | 供热量增量/MW | 煤耗量减量/[g/(kW∙h)] |
---|---|---|
50%额定工况 | 72.2 | 147.1 |
75%额定工况 | 76.6 | 106.5 |
100%额定工况 | 76.0 | 84.7 |
Tab. 2 Comparison of heat supply and coal consumption of a 135 MW unit under different working conditions
工况 | 供热量增量/MW | 煤耗量减量/[g/(kW∙h)] |
---|---|---|
50%额定工况 | 72.2 | 147.1 |
75%额定工况 | 76.6 | 106.5 |
100%额定工况 | 76.0 | 84.7 |
1 | 王瀚琳,刘洋,许立雄,等 .考虑风电消纳的区域多微网分层协调优化模型[J].电力建设,2020,41(8):87-98. doi:10.12204/j.issn.1000-7229.2020.08.011 |
WANG H L, LIU Y, XU L X,et al .Research on hierarchical coordinated optimization model of multi-microgrid system considering wind power consumption [J].Electric Power Construction,2020,41(8):87-98. doi:10.12204/j.issn.1000-7229.2020.08.011 | |
2 | 田蓓,王朝晖,张爽,等 .面向风光综合消纳的电力系统广域储能容量优化配置研究[J].智慧电力,2020,48(6):67-72. doi:10.3969/j.issn.1673-7598.2020.06.011 |
TIAN B, WANG Z H, ZHANG S,et al .Wide-area optimized allocation of energy storage capacity considering wind/photovoltaic power accommodation in power systems[J].Smart Power,2020,48(6):67-72. doi:10.3969/j.issn.1673-7598.2020.06.011 | |
3 | 宣文博,李慧,刘忠义,等 .一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 |
XUAN W B, LI H, LIU Z Y,et al .A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297. doi:10.12096/j.2096-4528.pgt.20104 | |
4 | 姜楠,戴赛,许丹,等 .计及机组组合与线路重构协同的电热联合系统消纳弃风研究[J].电力系统保护与控制,2022,50(14):105-113. |
JIANG N, DAI S, XU D,et al .Wind power consumption in a CHP system considering the collaboration of unit combination and line reconstruction[J].Power System Protection and Control,2022,50(14):105-113. | |
5 | 王允兴 .辐流式汽轮机的无蒸汽运行[J].电力技术,1957,2(11):37-39. |
WANG Y X .Steam free operation of radial flow turbine[J].Electric Power,1957,2(11):37-39. | |
6 | 顾荣芳 .英国茂伟型汽轮机改为无蒸汽运行的经验[J].电力技术,1959,4(12):51-52. |
GU F F .Experience of changing Maowei type steam turbine to no steam operation in Britain[J].Electric Power,1959,4(12):51-52. | |
7 | 王可辉,尹振新 .31-25-2型汽轮机少蒸汽运行探讨[J].黑龙江电力技术,1981(4):45-49. |
WANG K H, YIN Z X . Discussion on low steam operation of 31-25-2 steam turbine[J].Heilongjiang Electric Power,1981(4):45-49. | |
8 | 李金荣 .2.5万千瓦背压式汽轮机无蒸汽运行的试验[J].华东电力,1982(3):41-45. |
LI J R .Test on non steam operation of 25 000 kW back pressure steam turbine[J].East China Electric Power,1982(3):41-45. | |
9 | 徐奇焕 .母管制调峰机组无蒸汽运行合理性的分析[J].华东电力,1986(3):4-8. |
XU Q H . Analysis on the rationality of steam free operation of main pipe peak shaving unit[J].East China Electric Power,1986(3):4-8. | |
10 | 黄嘉驷,牟春华,雒青,等 . 一种无冷却蒸汽旁路的低压缸零出力供热系统:CN207647559U[P]. 2017-12-23. |
HUANG J S, MOU C H, LUO Q,et al .A zero output heating system of low pressure cylinder without cooling steam bypass:CN207647559U[P].2017-12-23. | |
11 | 张猛,刘鑫屏 .330 MW亚临界供热机组低压缸零出力改造方案的经济性分析[J].广东电力,2019,32(3):9-15. doi:10.3969/j.issn.1007-290X.2019.003.002 |
ZHANG M, LIU X P .Economy analysis for zero-output transform of low pressure cylinder of 330 MW subcritical heating unit[J].Guangdong Electric Power,2019,32(3):9-15. doi:10.3969/j.issn.1007-290X.2019.003.002 | |
12 | 韩立,郭涛 .350 MW供热机组低压缸零出力经济运行研究[J].节能技术,2019,37(1):59-61. |
HAN L, GUO T .Economic operation optimization research on zero output of low pressure cylinder of 350 MW heat supply unit[J].Energy Conservation Technology,2019,37(1):59-61. | |
13 | 刘启军 .低压缸“零出力”技术在抽凝供热机组上的应用[J].吉林电力,2019,47(5):1-4. doi:10.3969/j.issn.1009-5306.2019.05.001 |
LIU Q J .Application of “zero output” technology of low pressure cylinder in pumping and condensing heating unit[J].Jilin Electric Power,2019,47(5):1-4. doi:10.3969/j.issn.1009-5306.2019.05.001 | |
14 | 鄂志君,张利,杨帮宇,等 .低压缸零出力实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 |
E Z J, ZHANG L, YANG Y B,et al .Theoretical study on heat-electricity decoupling and energy saving of low-pressure cylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386. doi:10.3969/j.issn.1001-5884.2019.05.017 | |
15 | 王金星,郝剑,刘畅,等 .抽凝机组热电联产系统中扩大热电负荷比的灵活性研究[J].热力发电,2020,49(12):41-50. |
WANG J X, HAO J, LIU C,et al .Enlargement of heat-electricity ratio for flexibility operation in a large-scale extraction condensing turbine system[J].Thermal Power Generation,2020,49(12):41-50. | |
16 | 杨海生,张拓,唐广通,等 .低压缸零出力技术对供热机组深度调峰性能影响及调峰补偿标准探讨[J].热能动力工程,2020,35(6):268-273. doi:10.1109/powercon53785.2021.9697611 |
YANG H S, ZHANG T, TANG G T,et al .Influence of zero-output technology of low-pressure cylinder on deep peak regulation performance of heating unit and compensation standard for peak regulation[J].Journal of Engineering for Thermal Energy and Power,2020,35(6):268-273. doi:10.1109/powercon53785.2021.9697611 | |
17 | 王建勋 .运行背压变化对低压缸零出力技术安全性及经济性的影响分析[J].化工进展,2020,39(S1):85-89. |
WANG J X .Analysis on influence of variation of operating back pressure on safety and economy of zero output technology of low-pressure cylinder[J].Chemical Industry and Engineering Progress,2020,39(S1):85-89. | |
18 | 李俊,应光耀,包劲松,等 .改进型630 MW汽轮机低压缸宽负荷特性研究[J].汽轮机技术,2021,63(2):141-143. doi:10.3969/j.issn.1001-5884.2021.02.018 |
LI J, YING G Y, BAO J S,et al .Study on wide load characteristics of 630 MW improved turbine low pressure cylinder[J].Turbine Technology,2021,63(2):141-143. doi:10.3969/j.issn.1001-5884.2021.02.018 | |
19 | 戈志华,张倩,熊念,等 .330 MW供热机组低压缸近零出力热力性能分析[J].化工进展,2020,39(9):3650-3657. |
GE Z H, ZHANG Q, XIONG N,et al .Thermal performance analysis of 330 MW heating unit with low pressure cylinder near zero output[J].Chemical Industry and Engineering Progress,2020,39(9):3650-3657. | |
20 | 刘双白,张晶,吴昕,等 .320 MW机组低压缸零出力性能分析及应用研究[J].中国电力,2021,54(5):213-220. |
LIU S B, ZHANG J, WU X,et al .Performance analysis and application research of low-pressure cylinder zero output technology on 320 MW unit[J].Electric Power,2021,54(5):213-220. | |
21 | 天罡,郭涛,回世成,等 .350 MW机组低压缸近零出力运行技术创新与应用[J].汽轮机技术,2019,61(4):317-320. |
TIAN G, GUO T, HUI S C,et al .Innovation and application of low pressure cylinder running near zero output for 350 MW turbine[J].Turbine Technology,2019,61(4):317-320. | |
22 | 谷伟伟,张永海,余小兵,等 .某电厂汽轮机低压缸零出力供热工况低压末级叶片动强度分析[J]. 热力发电,2018,47(5):63-70. |
GU W W, ZHANG Y H, YU X B,et al .Dynamic strength analysis of the low pressure last stage blade under zero-output heating conditions of low pressure cylinder in a power plant[J].Thermal Power Generation,2018,47(5):63-70. | |
23 | 刘凤友,李强,盛伟,等 .某电厂汽轮机低压缸零出力供热工况低压末级叶片流场特性分析[J].汽轮机技术,2019,61(5):355-356. doi:10.3969/j.issn.1001-5884.2019.05.009 |
LIU F Y, LI Q, SHENG W,et al .Analysis of low-pressure last stage flow field characteristics of a steam turbine low pressure cylinder with zero output heat supply in a power plant[J].Turbine Technology,2019,61(5):355-356. doi:10.3969/j.issn.1001-5884.2019.05.009 | |
24 | 朱熹,谢明江,黄建强,等 .汽轮机低压缸零出力供热技术研究[J].机械工程师,2019(11):118-119. doi:10.21037/biotarget.2019.08.04 |
ZHU X, XIE M J, HUANG J Q,et al .Research on low pressur zero output technology of steam turbine[J].Mechanical Engineer,2019(11):118-119. doi:10.21037/biotarget.2019.08.04 | |
25 | 柴发军,胡金龙,杨国栋,等 .一种超高压200 MW低压缸零出力灵活性改造汽轮机:CN110259527A[P].2019-07-24. |
CHAI F J, HU J L, YANG G D,et al .A kind of ultra-high pressure 200 MW low pressure cylinder zero output flexibility transformation steam turbine:CN110259527A[P].2019-07-24. | |
26 | 程琛 .一种低压缸零出力的改造方法:CN108487956A[P].2018-03-28. doi:10.1109/pesc.1995.474926 |
CHENG C .Tansformation method of zero output of low pressure cylinder:CN108487956A[P].2018-03-28. doi:10.1109/pesc.1995.474926 | |
27 | 黄嘉驷,雒青,居文平,等 . 一种供热机组低压缸零出力的低压缸冷却系统:CN108661726A[P].2018-07-24. |
HUANG J S, LUO Q, JU W P,et al .A low pressure cylinder cooling system with zero output for low pressure cylinder of heat supply unit:CN108661726A[[P].2018-07-24. | |
28 | 刘学亮,刘涛,王红宇,等 .一种可降低冷源损失的主机低压缸零出力冷却蒸汽系统及方法:CN110513163A[P].2019-09-17. |
LIU X L, LIU T, WANG H Y,et al .A zero output cooling steam system and method of low pressure cylinder of main engine that can reduce the loss of cold source:CN110513163A[P].2019-09-17. | |
29 | 孙良环 .基于电液伺服阀的汽轮机低压缸零出力改造系统研究[J].机电信息,2019(12):60-61. doi:10.3969/j.issn.1671-0797.2019.12.029 |
SUN L H . Research on zero output reconstruction system of steam turbine low pressure cylinder based on electro-hydraulic servo valve[J].Mechanical and Electrical Information,2019(12):60-61. doi:10.3969/j.issn.1671-0797.2019.12.029 | |
30 | 程东涛,仇磊,杨荣祖,等 .一种双背压汽轮机低压缸零出力供热系统及调整方法:CN110454249A[P].2019-09-04. |
CHENG D T, QIU L, YANG R Z,et al .A zero output heating system for low pressure cylinder of double back pressure steam turbine and its adjustment method:CN110454249A[P].2019-09-04. | |
31 | 黄嘉驷,谢天,张建元,等 .一种火电机组中低压缸联合零出力供热系统:CN207728406U[P].2018-01-08. |
HUANG J S, XIE T, ZHANG J Y,et al .A combined zero output heating system of medium and low pressure cylinders in thermal power units: CN207728406U[P].2018-01-08. | |
32 | 黄嘉驷,谢天,张建元,等 .三排汽200 MW机组中低压缸联合零出力供热系统:CN207728409U[P].2018-01-08. |
HUANG J S, XIE T, ZHANG J Y,et al .Combined zero output heating system of middle and low pressure cylinders of three exhaust 200 MW unit:CN207728409U[P].2018-01-08. | |
33 | 麦东道,陈冬阳,王明明,等 .低压缸零出力深度回收热电厂余热的联合供热系统:CN208475426U[P].2018-06-08. |
MAI D D, CHEN D Y, WANG M M,et al .Combined heat supply system for deep recovery of waste heat in thermal power plant with zero output of low pressure cylinder:CN208475426U[P].2018-06-08. | |
34 | 黄坤,薛军,谭云,等 .双低压缸汽轮机两个低压缸同时或分别零出力的改造结构:CN110307043A[P].2019-06-27. |
HUANG K, XUE J, TAN Y,et al .Reconstruction structure of two low pressure cylinders of double low pressure cylinder steam turbine with zero output at the same time or respectively:CN110307043A[P].2019-06-27. | |
35 | 赵卫军,黄坤,谭云,等 .一种双低压缸汽轮机低压缸零出力的控制及保护方法:CN110219707A[P].2019-06-27. |
ZHAO W J, HUANG K, TAN Y,et al .A control and protection method for zero output of low pressure cylinder of double low pressure cylinder steam turbine: CN110219707A[P].2019-06-27. | |
36 | 陈建国,谢争先,付怀仁,等 .300 MW机组汽轮机低压缸零出力技术[J].热力发电,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 |
CHEN J G, XIE Z X, FU H R,et al .Zero output technology of the low-pressure cylinder of 300 MW unit turbine[J].Thermal Power Generation,2018,47(5):106-110. doi:10.19666/j.rlfd.201712162 | |
37 | 刘勇,刘涛,李鹏 .330 MW东方汽轮机低压缸零出力改造案例研究[J].机电工程技术,2019,48(9):237-242. |
LIU Y, LIU T, LI P .Case analysis of low pressure cylinder zero output retrofit of 300 MW oriental steam turbine[J].Mechanical & Electrical Engineering Technology,2019,48(9):237-242. | |
38 | 曲大雷,回世成,李赢,等 .350 MW机组低压缸零出力运行应用研究[J].山东电力技术,2018,45(11):63-67. |
QU D L, HUI S C, LI Y,et al . Research and apply on zero output operation of low pressure cylinder of 350 MW steam turbine[J].Shandong Electric Power,2018,45(11):63-67. | |
39 | 回世成,曲大雷,李赢,等 .低压缸零出力改造分析[J].东北电力技术,2019,40(8):56-58. doi:10.3969/j.issn.1004-7913.2019.08.015 |
HUI S C, QU D L, LI Y,et al .Research on transformation of low pressure cylinder zero output[J].Northeast Electric Power Technology,2019,40(8):56-58. doi:10.3969/j.issn.1004-7913.2019.08.015 | |
40 | 张继文,张培杰,何青尔,等 .135 MW机组供热系统改造[J].内蒙古电力技术,2020,38(2):95-97. doi:10.3969/j.issn.1008-6218.2020.00.029 |
ZHANG J W, ZHANG P J, HE Q E,et al .Reformation of heat-supply system in 135 MW Uunit[J].Inner Mongolia Electric Power,2020,38(2):95-97. doi:10.3969/j.issn.1008-6218.2020.00.029 | |
41 | 史卫刚,李军辉 .330 MW机组低压缸零出力改造及热电特性分析[J].河北电力技术,2020,39(2):59-62. |
SHI W G, LI J H .Reformation and thermoelectric characteristics analysis of zero output of 330 MW unit low pressure cylinder[J].Hebei Electric Power,2020,39(2):59-62. | |
42 | 李文林 .供热机组低压缸零出力改造技术探究[J].机电信息,2020(27):74-75. doi:10.1109/icisce50968.2020.00474 |
LI W L .Research on zero output transformation technology of low pressure cylinder of heat supply unit[J].Mechanical and Electrical Information,2020(27):74-75. doi:10.1109/icisce50968.2020.00474 |
[1] | Yanfang LIANG, Shuxuan PENG, Yongjun CUI, Jianchao LUO, Yaonian HE, Linchao BAI, Jinglun FU. Calculation of Heat Transfer Performance of Steam Turbine Shaft Sealing Heater [J]. Power Generation Technology, 2023, 44(6): 817-823. |
[2] | Zhiyun WANG, Yuzhu ZHAO, Xuedong WANG, Yuanshu ZHANG. Experimental Study on Regulation Characteristics of Intermediate Pressure Cylinder Regulating Valves of Heat Supply Steam Turbine Under Peak Regulating Mechanism [J]. Power Generation Technology, 2022, 43(6): 970-976. |
[3] | Honghui SHI, Haibo WANG, Rongxiu CAO, Li YAO, Xin YAN. Research on Aerodynamic and Strength Performance of Last Stage in High-Pressure Cylinder of Steam Turbine Under Variable Working Conditions [J]. Power Generation Technology, 2022, 43(6): 959-969. |
[4] | Changchun LIU, Chun GUAN, Kuijun GUO, Yufeng LI, Yiliang MA. Flutter Prediction Method for Long Blade of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 500-508. |
[5] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[6] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[7] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[8] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
[9] | Xiaojun HUANG,Xiangguo DU. Effect of 600 MW Supercritical Steam Turbine Prolonging Running Time of Mixing Valve on Unit Vibration [J]. Power Generation Technology, 2019, 40(2): 175-180. |
[10] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[11] | Lihua CAO,Kai ZHOU,Heyong SI. Study on Installing Deflector in Exhaust Hood of Steam Turbine Based on Quadratic Regressive Orthogonal Experiment [J]. Power Generation Technology, 2019, 40(1): 56-60. |
[12] | Chuanling LIU,Minghui LIU,Zhenjiang CHEN,Ang SONG. Analysis on the Change of Steam Turbine Back Pressure Under Operation of Low Pressure Economizer [J]. Power Generation Technology, 2018, 39(4): 378-381. |
[13] | Yi LI. Heat Supply System of 2×300MW Units' Circulating Water Waste Heat [J]. Power Generation Technology, 2018, 39(3): 244-248. |
[14] | WANG Yu, XU Weixuan, GUO Baoren. Vibration Test and Analysis of Dynamic Balancing without Test-mass on Multi-plane for a 350MW Turbo-generator Unit [J]. Power Generation Technology, 2017, 38(6): 53-56. |
[15] | GUO Shuang, WANG Yu, WANG Yan-dong. Process Analysis of a 600MW Subcritical Air-cooled Unit Speed Up to 3000r/min [J]. Power Generation Technology, 2017, 38(1): 48-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||