发电技术 ›› 2023, Vol. 44 ›› Issue (3): 361-372.DOI: 10.12096/j.2096-4528.pgt.22183
胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖
收稿日期:
2023-02-10
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
于波
作者简介:
基金资助:
Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN
Received:
2023-02-10
Published:
2023-06-30
Online:
2023-06-30
Contact:
Bo YU
Supported by:
摘要:
高温固体氧化物电解池(solid oxide electrolysis cell,SOEC)是一种能量转化效率高、反应速率快、应用场景广的新型高效电化学能量转化装置,在低成本绿氢制备、高附加值含碳化学品制备、氮氧化物处理、合成氨等领域具有广阔应用前景,有望在能源、化工、交通等领域的低碳化转型发挥重要作用。结合SOEC在制氢、制油、氮化物处理和制氨等领域的最新进展,对SOEC发展现状进行了系统归纳,并对未来发展需要重点关注的方向进行了展望。
中图分类号:
胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372.
Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN. Application Research Progress of High Temperature Solid Oxide Electrolysis Cell[J]. Power Generation Technology, 2023, 44(3): 361-372.
1 | 赵春生,杨君君,王婧,等.燃煤发电行业低碳发展路径研究[J].发电技术,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 |
ZHAO C S, YANG J J, WANG J,et al. Research on low-carbon development path of coal-fired power industry[J].Power Generation Technology,2021,42(5):547-553. doi:10.12096/j.2096-4528.pgt.21054 | |
2 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
3 | ZHENG R Y, LIU Z C, WANG Y D,et al .The future of green energy and chemicals:rational design of catalysis routes[J].Joule,2022,6(6):1148-1159. doi:10.1016/j.joule.2022.04.014 |
4 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
5 | HAUCH A, KÜNGAS R, BLENNOW P,et al .Recent advances in solid oxide cell technology for electrolysis[J].Science,2020,370(6513):6118. doi:10.1126/science.aba6118 |
6 | ZHAO C H, LI Y F, ZHANG W Q,et al .Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells[J].Energy & Environmental Science,2020,13(1):53-85. doi:10.1039/c9ee02230a |
7 | 曹军文,郑云,张文强,等 .能源互联网推动下的氢能发展[J].清华大学学报(自然科学版),2021,61(4):302-311. doi:10.16511/j.cnki.qhdxxb.2021.25.007 |
CAO J W, ZHENG Y, ZHANG W Q,et al .Hydrogen energy development driven by the energy internet[J].Journal of Tsinghua University (Science and Technology),2021,61(4):302-311. doi:10.16511/j.cnki.qhdxxb.2021.25.007 | |
8 | 曹军文,覃祥富,耿嘎,等 .氢气储运技术的发展现状与展望[J].石油学报(石油加工),2021,37(6):1461-1478. doi:10.3969/j.issn.1001-8719.2021.06.026 |
CAO J W, QIN X F, GENG G,et al .Current status and prospects of hydrogen storage and transportation technology[J].Acta Petrolei Sinica (Petroleum Processing Section),2021,37(6):1461-1478. doi:10.3969/j.issn.1001-8719.2021.06.026 | |
9 | 曹军文,张文强,李一枫,等 .中国制氢技术的发展现状[J].化学进展,2021,33(12):2215-2244. doi:10.7536/PC201128 |
CAO J W, ZHANG W Q, LI Y F,et al .Current status of hydrogen production in China[J].Progress in Chemistry,2021,33(12):2215-2244. doi:10.7536/PC201128 | |
10 | ZHENG Y, WANG J C, YU B,et al .A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs):advanced materials and technology[J].Chemical Society Reviews,2017,46(5):1427-1463. doi:10.1039/c6cs00403b |
11 | LI Y F, ZHANG W Q, ZHENG Y,et al .Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J].Chemical Society Reviews,2017,46(20):6345-6378. doi:10.1039/c7cs00120g |
12 | ZHENG Y, CHEN Z W, ZHANG J J .Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels[J].Electrochemical Energy Reviews,2021,4(3):508-517. doi:10.1007/s41918-021-00097-4 |
13 | LI Z H, LI M R, ZHU Z H .Perovskite cathode materials for low-temperature solid oxide fuel cells:fundamentals to optimization[J].Electrochemical Energy Reviews,2022,5(2):263-311. doi:10.1007/s41918-021-00098-3 |
14 | 张文强,于波 .高温固体氧化物电解制氢技术发展现状与展望[J].电化学,2020,26(2):212-229. |
ZHANG W Q, YU B .Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J].Journal of Electrochemistry,2020,26(2):212-229. | |
15 | 刘明义,于波,徐景明 .固体氧化物电解水制氢系统效率[J].清华大学学报(自然科学版),2009,49(6):868-871. |
LIU M Y, YU B, XU J M .Efficiency of solid oxide electrolysis system for hydrogen production[J].Journal of Tsinghua University (Science and Technology),2009,49(6):868-871. | |
16 | EBBESEN S D, JENSEN S H, HAUCH A,et al .High temperature electrolysis in alkaline cells,solid proton conducting cells,and solid oxide cells[J].Chemical Reviews,2014,114(21):10697-10734. doi:10.1021/cr5000865 |
17 | ADLER S B .Factors governing oxygen reduction in solid oxide fuel cell cathodes[J].Chemical Reviews,2004,104(10):4791-4844. doi:10.1021/cr020724o |
18 | ZHU T L, TROIANI H E, MOGNI L V,et al .Ni-substituted Sr(Ti, Fe)O3 SOFC anodes:achieving high performance via metal alloy nanoparticle exsolution[J].Joule,2018,2(3):478-496. doi:10.1016/j.joule.2018.02.006 |
19 | RIVA M, KUBICEK M, HAO X F,et al .Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide[J].Nature Communications,2018,9(1):1-9. doi:10.1038/s41467-018-05685-5 |
20 | NIU B B, LU C L, YI W D,et al .In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells[J].Applied Catalysis B:Environmental,2020,270:118842. doi:10.1016/j.apcatb.2020.118842 |
21 | ZHOU Y J, LIN L, SONG Y F,et al .Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells[J].Nano Energy,2020,71:104598. doi:10.1016/j.nanoen.2020.104598 |
22 | DUAN N Q, YANG J J, GAO M R,et al .Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3- δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells[J].Nano Energy,2020,77:105207. doi:10.1016/j.nanoen.2020.105207 |
23 | PARK S, KIM Y, HAN H,et al .In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO[J].Applied Catalysis B:Environmental,2019,248:147-156. doi:10.1016/j.apcatb.2019.02.013 |
24 | DEKA D J, GUNDUZ S, FITZGERALD T,et al .Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co-doped lanthanum strontium ferrite perovskite cathodes[J].Applied Catalysis B:Environmental,2019,248:487-503. doi:10.1016/j.apcatb.2019.02.045 |
25 | KIM Y T, SHIKAZONO N .Investigation of La0.6Sr0.4CoO3- δ -Gd0.1Ce0.9O2- δ composite cathodes with different volume ratios by three-dimensional reconstruction[J].Solid State Ionics,2017,309:77-85. doi:10.1016/j.ssi.2017.07.010 |
26 | DUAN C C, KEE R J, ZHU H Y,et al .Highly durable,coking and sulfur tolerant,fuel-flexible protonic ceramic fuel cells[J].Nature,2018,557:217-222. doi:10.1038/s41586-018-0082-6 |
27 | LI M R, ZHAO M W, LI F,et al .A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 ℃[J].Nature Communications,2017,8(1):1-9. doi:10.1038/ncomms13990 |
28 | BAE K, JANG D Y, CHOI H J,et al .Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells[J].Nature Communications,2017,8(1):1-9. doi:10.1038/ncomms14553 |
29 | BOLDRIN P, RUIZ-TREJO E, MERMELSTEIN J,et al .Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis[J].Chemical Reviews,2016,116(22):13633-13684. doi:10.1021/acs.chemrev.6b00284 |
30 | LV H F, LIN L, ZHANG X M,et al .Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1-Mo0.5O6- δ via repeated redox manipulations for CO2 electrolysis[J].Nature Communications,2021,12:1-11. doi:10.1038/s41467-021-26001-8 |
31 | SONG Y F, ZHOU S, DONG Q,et al .Oxygen evolution reaction over the AU/YSZ interface at high temperature[J].Angewandte Chemie,2019,58(14):4617-4621. doi:10.1002/anie.201814612 |
32 | IRVINE J T S, NEAGU D, VERBRAEKEN M C,et al .Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J].Nature Energy,2016,1:15014. doi:10.1038/nenergy.2015.14 |
33 | WANG F F, KISHIMOTO H, ISHIYAMA T,et al .A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells[J].Journal of Power Sources,2020,478:228763. doi:10.1016/j.jpowsour.2020.228763 |
34 | AZIZ A J A, BAHARUDDIN N A, SOMALU M R,et al .Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications[J].Ceramics International,2020,46(15):23314-23325. doi:10.1016/j.ceramint.2020.06.176 |
35 | PENNER S, GÖTSCH T, KLÖTZER B .Increasing complexity approach to the fundamental surface and interface chemistry on SOFC anode materials[J].Accounts of Chemical Research,2020,53(9):1811-1821. doi:10.1021/acs.accounts.0c00218 |
36 | ZHANG Y F, LIU J J, SINGH M,et al .Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells[J].Nano-Micro Letters,2020,12:178. doi:10.1007/s40820-020-00518-x |
37 | PAIVA J A E, CAJAS D P C, RODRIGUES F A,et al .Synthesis and electrical properties of strontium-doped lanthanum ferrite with perovskite-type structure[J].Ceramics International,2020,46(11):18419-18427. doi:10.1016/j.ceramint.2020.04.212 |
38 | AFROZE S, KARIM A H, CHEOK Q,et al .Latest development of double perovskite electrode materials for solid oxide fuel cells:a review[J].Frontiers in Energy,2019,13(4):770-797. doi:10.1007/s11708-019-0651-x |
39 | DUAN C C,KEE R, ZHU H Y,et al .Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production[J].Nature Energy,2019,4(3):230-240. doi:10.1038/s41560-019-0333-2 |
40 | ZHOU Y, GUAN X F, ZHOU H,et al .Strongly correlated perovskite fuel cells[J].Nature,2016,534:231-234. doi:10.1038/nature17653 |
41 | GRIMAUD A, HONG W T, SHAO-HORN Y,et al .Anionic redox processes for electrochemical devices[J].Nature Materials,2016,15(2):121-126. doi:10.1038/nmat4551 |
42 | TSVETKOV N, LU Q Y, SUN L X,et al .Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface[J].Nature Materials,2016,15(9):1010-1016. doi:10.1038/nmat4659 |
43 | GRAVES C, EBBESEN S D, JENSEN S H,et al .Eliminating degradation in solid oxide electrochemical cells by reversible operation[J].Nature Materials,2015,14(2):239-244. doi:10.1038/nmat4165 |
44 | SUNTIVICH J, MAY K J, GASTEIGER H A,et al .A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J].Science,2011,334:1383-1385. doi:10.1126/science.1212858 |
45 | LI T P, WANG T P, WEI T,et al .Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities[J].Small,2021,17(6):1-9. doi:10.1002/smll.202007211 |
46 | 李建林,梁忠豪,梁丹曦,等 .“双碳”目标下绿氢制备及应用技术发展现状综述[J].分布式能源,2021,6(4):25-33. doi:10.16513/j.2096-2185.DE.2106531 |
LI J L, LIANG Z H, LIANG D X,et al .Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J].Distributed Energy,2021,6(4):25-33. doi:10.16513/j.2096-2185.DE.2106531 | |
47 | KNIBBE R, TRAULSEN M L, HAUCH A,et al .Solid oxide electrolysis cells:degradation at high current densities[J].Journal of the Electrochemical Society,2010,157:1209-1217. doi:10.1149/1.3447752 |
48 | WU T, ZHANG W Q, LI Y F,et al .Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J].Advanced Energy Materials,2018,8(33):1802203. doi:10.1002/aenm.201802203 |
49 | CAO J W, LI Y F, ZHENG Y,et al .A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra-high current density over 5 A⋅cm-2 [J].Advanced Energy Materials,2022,12(28):2200899. doi:10.1002/aenm.202200899 |
50 | WU W, DING H P, ZHANG Y Y,et al .3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 ℃[J].Advanced Science,2018,5(11):1800360. doi:10.1002/advs.201800360 |
51 | SHIMADA H, YAMAGUCHI T, KISHIMOTO H,et al .Nanocomposite electrodes for high current density over 3 A⋅cm-2 in solid oxide electrolysis cells[J].Nature Communications,2019,10(1):5432. doi:10.1038/s41467-019-13426-5 |
52 | 初壮,赵蕾,孙健浩,等 .考虑热能动态平衡的含氢储能的综合能源系统热电优化[J].电力系统保护与控制,2023,51(3):1-12. |
CHU Z, ZHAO L, SUN J H,et al .Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance[J].Power System Protection and Control,2023,51(3):1-12. | |
53 | 要点氢能 .Bloom在美启动批量SOEC电解槽生产线 [EB/OL].(2022-11-03)[2022-12-15].. doi:10.4135/9781544391199.n345 |
Hydrogen Point .Bloom starts SOEC manufacture production line in America[EB/OL].(2022-11-03)[2022-12-15].. doi:10.4135/9781544391199.n345 | |
54 | Department of Energy .INFOGRAPHIC:clean hydrogen powered by nuclear energy[EB/OL].(2022-11-09)[2022-12-25].. |
55 | Department of Energy .4 nuclear power plants gearing up for clean hydrogen production[EB/OL].(2022-11-09)[2022-12-25].. |
56 | 科技日报 .清华大学固体氧化物电解池制氢系统样机开发项目通过验收[EB/OL].(2022-07-20)[2022-12-15].. doi:10.17161/pc.1808.15982 |
2&wfr=spider&for=pc . Science and Technology Daily.SOEC hydrogen producing system prototype development project has passed the acceptance check[EB/OL].(2022-07-20)[2022-12-15].. doi:10.17161/pc.1808.15982 | |
2&wfr=spider&for=pc. doi:10.17161/pc.1808.15982 | |
57 | 张平,于波,徐景明 .核能制氢技术的发展[J].核化学与放射化学,2011,33(4):193-203. |
ZHANG P, YU B, XU J M .Development of the technology for nuclear production of hydrogen[J].Journal of Nuclear and Radiochemistry,2011,33(4):193-203. | |
58 | LIU S M, ZHANG W Q, LI Y F,et al .REBaCo2O5+ δ (RE=Pr, Nd, and Gd) as promising oxygen electrodes for intermediate-temperature solid oxide electrolysis cells[J].RSC Advances,2017,7(27):16332-16340. doi:10.1039/c6ra28005f |
59 | LIU S M, YU B, ZHANG W Q,et al .Electrochemical performance of Co-containing mixed oxides as oxygen electrode materials for intermediate-temperature solid oxide electrolysis cells[J].International Journal of Hydrogen Energy,2016,41(36):15952-15959. doi:10.1016/j.ijhydene.2016.05.077 |
60 | ZHANG W Q, YU B, XU J M .Investigation of single SOEC with BSCF anode and SDC barrier layer[J].International Journal of Hydrogen Energy,2012,37(1):837-842. doi:10.1016/j.ijhydene.2011.04.049 |
61 | WANG X, YU B, ZHANG W Q,et al .Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production[J].International Journal of Hydrogen Energy,2012,37(17):12833-12838. doi:10.1016/j.ijhydene.2012.05.093 |
62 | ZHAO C H, LIU X G, ZHANG W Q,et al .Measurement of oxygen reduction/evolution kinetics enhanced (La, Sr)CoO3/(La, Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs[J].International Journal of Hydrogen Energy,2019,44(35):19102-19112. doi:10.1016/j.ijhydene.2018.04.128 |
63 | LIANG M D, YU B, WEN M F,et al .Preparation of NiO-YSZ composite powder by a combustion method and its application for cathode of SOEC[J].International Journal of Hydrogen Energy,2010,35(7):2852-2857. doi:10.1016/j.ijhydene.2009.05.006 |
64 | LIANG M D, YU B, WEN M F,et al .Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism[J].Journal of Power Sources,2009,190(2):341-345. doi:10.1016/j.jpowsour.2008.12.132 |
65 | QIN X F, CAO J W, GENG G,et al .Solid oxide fuel cell system for automobiles[J].International Journal of Green Energy,2022:1-10. doi:10.1080/15435075.2022.2065454 |
66 | ZHENG Y, ZHAO C H, WU T,et al .Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells[J].Energy and AI,2020,2:100027. doi:10.1016/j.egyai.2020.100027 |
67 | ZHENG Y, LI Y F, WU T,et al .Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction[J].Nano Energy,2019,62:521-529. doi:10.1016/j.nanoen.2019.05.069 |
68 | ZHENG Y, LI Y F, WU T,et al .Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3- δ /Nd0.8Sr1.2CoO4± δ heterointerfaces[J].Nano Energy,2018,51:711-720. doi:10.1016/j.nanoen.2018.07.017 |
69 | LI Y F, ZHANG W Q, WU T,et al .Segregation induced self-assembly of highly active perovskite for rapid oxygen reduction reaction[J].Advanced Energy Materials,2018,8(29):1801893. doi:10.1002/aenm.201801893 |
70 | ZHU J X, ZHANG W Q, LI Y F,et al. Enhancing CO 2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnO x nanoparticles from (Pr, Ba)2-Mn2- y Fe y O5+ δ layered perovskites for SOEC cathodes[J].Applied Catalysis B:Environmental,2020,268:118389 . doi:10.1016/j.apcatb.2019.118389 |
71 | SKAFTE T L, GUAN Z X, MACHALA M L,et al .Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates[J].Nature Energy,2019,4(10):846-855. doi:10.1038/s41560-019-0457-4 |
72 | YE L T, SHANG Z B, XIE K .Selective oxidative coupling of methane to ethylene in a solid oxide electrolyser based on porous single-crystalline CeO2 monoliths[J].Angewandte Chemie,2022,61(32):1-8. doi:10.1002/ange.202207211 |
73 | SONG Y F, LIN L, FENG W C,et al .Interfacial enhancement by γ-Al2O3 of electrochemical oxidative dehydrogenation of ethane to ethylene in solid oxide electrolysis cells[J].Angewandte Chemie,2019,58(45):16043-16046. doi:10.1002/anie.201908388 |
74 | LI W J, LIU X Z, YU H,et al .La0.75Sr0.25Cr0.5Mn0.5-O3- δ Ce0.8Sm0.2O1.9 as composite electrodes in symmetric solid electrolyte cells for electrochemical removal of nitric oxide[J].Applied Catalysis B:Environmental,2020,264:118533. doi:10.1016/j.apcatb.2019.118533 |
75 | AMAR I A, LAN R, HUMPHREYS J,et al .Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3- δ -Ce0.8Gd0.18Ca0.02O2- δ composite cathode[J].Catalysis Today,2017,286:51-56. doi:10.1016/j.cattod.2016.09.006 |
76 | WANG K H, CHEN H L, LI S D,et al .Sr x Ti0.6Fe0.4O3- δ (x=1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)[J].Journal of Materials Chemistry A,2022,10:24813-24823. doi:10.1039/d2ta01669a |
77 | JIANG L L, FU X Z .An ammonia-hydrogen energy roadmap for carbon neutrality:opportunity and challenges in China[J].Engineering,2021,7(12):1688-1691. doi:10.1016/j.eng.2021.11.004 |
78 | 氢能源网 .绿氨制备:世界最大容量电解槽预定 [EB/OL].(2022-09-16)[2022-12-15].. |
China-Hydrogen .Green ammonia production:electrolysis cell with world’s largest capacity preordered[EB/OL].(2022-09-16)[2022-12-15].. |
[1] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[2] | 刘玉成, 杨源, 胡宇浩, 李雨航, 赵子泰, 马志勇, 董玉亮. 基于事件树连锁故障推演和证据推理的制氢站设备风险评价[J]. 发电技术, 2024, 45(1): 42-50. |
[3] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[4] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[5] | 宋天琦, 马韵婷, 张智慧. 光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析[J]. 发电技术, 2023, 44(4): 465-472. |
[6] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[7] | 吴磊, 彭黎菊, 李爽, 史翊翔, 蔡宁生. 百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析[J]. 发电技术, 2023, 44(3): 350-360. |
[8] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[9] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[10] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[11] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[12] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[13] | 董辉, 葛维春, 张诗钽, 刘闯, 楚帅. 海上风电制氢与电能直接外送差异综述[J]. 发电技术, 2022, 43(6): 869-879. |
[14] | 李泽航, 周浩, 李浩秒, 王康丽, 蒋凯. 面向电力系统的液态金属电池储能技术[J]. 发电技术, 2022, 43(5): 760-774. |
[15] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||