发电技术 ›› 2023, Vol. 44 ›› Issue (3): 296-304.DOI: 10.12096/j.2096-4528.pgt.23022
陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆
收稿日期:
2023-03-02
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
赵晋斌
作者简介:
基金资助:
Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI
Received:
2023-03-02
Published:
2023-06-30
Online:
2023-06-30
Contact:
Jinbin ZHAO
Supported by:
摘要:
随着新能源占比逐渐提高,作为辅助新能源并网的储能技术受到广泛关注。氢储能和燃料电池技术已被我国列为战略性能源技术,并积极应用到市场和企业发展中。电解水制氢可以平抑可再生能源并网带来的波动,帮助电网削峰调频;燃料电池作为提高能源转换率的发电装置,同时具备噪音小、无污染等优势,是消纳可再生能源的有效方式之一。对现有储能技术的发展现状和优势进行对比分析,着重介绍了氢储能系统目前关键技术和研究方向,并对氢储能商业化发展进行展望。
中图分类号:
陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304.
Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry[J]. Power Generation Technology, 2023, 44(3): 296-304.
储能类型 | 储能系统 | 寿命 | 优点 | 应用范围 | 响应时间 | 效率/% |
---|---|---|---|---|---|---|
机械储能 | 抽水蓄能 | >30 a | 技术成熟、成本较低、寿命长 | 广泛应用于调峰、调频和备用电源场景 | 分钟级 | 70~75 |
电化学储能 | 锂离子电池 | 5~10 a | 能量密度大 | 辅助可再生能源备用、调峰调频 | 百毫秒级 | 85~98 |
全钒液流电池 | 5~15 a | 安全性好 | 调峰、调频、电能质量调节 | 百毫秒级 | 75~85 | |
铅蓄电池 | 3~8 a | 性价比高、技术成熟 | 削峰填谷、容量备用 | 百毫秒级 | 70~90 | |
电磁蓄能 | 超级电容器 | >30 000次 | 响应速度快、转换效率高 | 电能质量调节、削峰等 | 毫秒级 | 70~90 |
表1 储能技术类型特性比较
Tab. 1 Comparison of energy storage technology types and characteristics
储能类型 | 储能系统 | 寿命 | 优点 | 应用范围 | 响应时间 | 效率/% |
---|---|---|---|---|---|---|
机械储能 | 抽水蓄能 | >30 a | 技术成熟、成本较低、寿命长 | 广泛应用于调峰、调频和备用电源场景 | 分钟级 | 70~75 |
电化学储能 | 锂离子电池 | 5~10 a | 能量密度大 | 辅助可再生能源备用、调峰调频 | 百毫秒级 | 85~98 |
全钒液流电池 | 5~15 a | 安全性好 | 调峰、调频、电能质量调节 | 百毫秒级 | 75~85 | |
铅蓄电池 | 3~8 a | 性价比高、技术成熟 | 削峰填谷、容量备用 | 百毫秒级 | 70~90 | |
电磁蓄能 | 超级电容器 | >30 000次 | 响应速度快、转换效率高 | 电能质量调节、削峰等 | 毫秒级 | 70~90 |
制氢方法 | 优点 | 缺点 | 电解效率/% | 工作温度/℃ | 启动时间 |
---|---|---|---|---|---|
碱性电解水 | 结构简单,技术成熟,非贵金属催化剂,成本低,商业化 | 电解液泄漏污染环境,占地面积大,动态响应差,电解密度有限 | 52~82 | 60~80 | 1~10 min |
质子交换膜电解水 | 结构紧凑,电流密度高,波动能源适应性强,制氢效率高 | 成本高,商业化程度低,功耗较高,催化剂易被金属离子毒化 | 74~87 | 50~80 | 1 s~5 min |
固体氧化物电解水 | 效率高,非贵金属催化剂,转化效率高,洁净环保 | 需要额外热源,高温条件增加成本,启动慢,高温下材料易老化 | 85~100 | 700~1 000 | >20 min |
表2 电解水制氢技术对比
Tab. 2 Comparison of electrolysis hydrogen production technology
制氢方法 | 优点 | 缺点 | 电解效率/% | 工作温度/℃ | 启动时间 |
---|---|---|---|---|---|
碱性电解水 | 结构简单,技术成熟,非贵金属催化剂,成本低,商业化 | 电解液泄漏污染环境,占地面积大,动态响应差,电解密度有限 | 52~82 | 60~80 | 1~10 min |
质子交换膜电解水 | 结构紧凑,电流密度高,波动能源适应性强,制氢效率高 | 成本高,商业化程度低,功耗较高,催化剂易被金属离子毒化 | 74~87 | 50~80 | 1 s~5 min |
固体氧化物电解水 | 效率高,非贵金属催化剂,转化效率高,洁净环保 | 需要额外热源,高温条件增加成本,启动慢,高温下材料易老化 | 85~100 | 700~1 000 | >20 min |
燃料电池技术 | 优点 | 缺点 | 发电效率/% | 工作温度/℃ | 启动时间 | 功率密度/ (W/cm2) |
---|---|---|---|---|---|---|
碱性燃料电池 | 工作温度低,还原反应速度比较快,可使用非铂催化剂 | 需要电解液保持电池水平衡,废热利用受限 | 45~60 | 80~120 | 1~10 min | 0.5 |
质子交换膜 燃料电池 | 工作温度低,启动快,结构简单 | 成本高,技术难度大,商业化程度低 | 50~60 | 25~105 | 1~10 min | 1~2 |
固体氧化物 燃料电池 | 较高电流密度,高功率密度,可避免腐蚀问题 | 对温度要求较高,低温时功率较低,会出现热膨胀问题 | 50~70 | 750~1 000 | >10 h | 0.3 |
表3 燃料电池技术对比
Tab. 2 Comparison of fuel cell technologies
燃料电池技术 | 优点 | 缺点 | 发电效率/% | 工作温度/℃ | 启动时间 | 功率密度/ (W/cm2) |
---|---|---|---|---|---|---|
碱性燃料电池 | 工作温度低,还原反应速度比较快,可使用非铂催化剂 | 需要电解液保持电池水平衡,废热利用受限 | 45~60 | 80~120 | 1~10 min | 0.5 |
质子交换膜 燃料电池 | 工作温度低,启动快,结构简单 | 成本高,技术难度大,商业化程度低 | 50~60 | 25~105 | 1~10 min | 1~2 |
固体氧化物 燃料电池 | 较高电流密度,高功率密度,可避免腐蚀问题 | 对温度要求较高,低温时功率较低,会出现热膨胀问题 | 50~70 | 750~1 000 | >10 h | 0.3 |
1 | 刘金朋,侯焘 .氢储能技术及其电力行业应用研究综述及展望[J].电力与能源,2020,41(2):230-233. |
LIU J P, HOU T .Review and prospect of hydrogen energy storage and its application in power industry[J].Power & Energy,2020,41(2):230-233. | |
2 | 孙伟卿,罗静,张婕 .高比例风电接入的电力系统储能容量配置及影响因素分析[J].电力系统保护与控制,2021,49(15):9-18. |
SUN W Q, LUO J, ZHANG J .Energy storage capacity allocation and influence factor analysis of a power system with a high proportion of wind power[J].Power System Protection and Control,2021,49(15):9-18. | |
3 | 鲁鹏,田浩,武伟鸣,等 .需求侧能量枢纽和储能协同提升风电消纳和平抑负荷峰谷模型[J].电力科学与技术学报,2021,36(1):42-51. |
LU P, TIAN H, WU W M,et al .Demand side energy hub and energy storage cooperate to smooth peak and valley and improve wind power consumption model[J].Journal of Electric Power Science and Technology,2021,36(1):42-51. | |
4 | 马锐,李相俊,李文启,等 .可再生能源供电区域电网中储能系统协同调度策略[J].发电技术,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 |
MA R, LI X J, LI W Q,et al .Cooperative scheduling strategy of energy storage systems for regional grid supplied by renewable energy[J].Power Generaton Technology,2021,42(1):31-39. doi:10.12096/j.2096-4528.pgt.20027 | |
5 | 王辉,梁登香,韩晓娟 .储能参与泛在电力物联网辅助服务应用综述[J].发电技术,2021,42(2):171-179. doi:10.12096/j.2096-4528.pgt.19184 |
WANG H, LIANG D X, HAN X J .Reviews of energy storage participating in auxiliary services under ubiquitous internet of things[J].Power Generaton Technology,2021,42(2):171-179. doi:10.12096/j.2096-4528.pgt.19184 | |
6 | 陈睿彬,陆玲霞,包哲静,等 .电池储能系统参与用户侧削峰填谷的鲁棒优化调度策略[J].电力建设,2022,43(10):66-76. |
CHEN R B, LU L X, BAO Z J,et al .Robust optimal dispatch strategy for battery energy storage system participating in user-side peak load shifting[J].Electric Power Construction,2022,43(10):66-76. | |
7 | 荆平,徐桂芝,赵波,等 .面向全球能源互联网的大容量储能技术[J].智能电网,2015(6):486-490. |
JING P, XU G Z, ZHAO B,et al .Large capacity energy storage for global energy internet[J].Smart Grid,2015(6):486-490. | |
8 | 陈硕翼,朱卫东,张丽,等 .氢能燃料电池技术发展现状与趋势[J].科技中国,2018(5):11-13. doi:10.3969/j.issn.1673-5129.2018.05.005 |
CHEN S Y, ZHU W D, ZHANG L,et al .Current status and trends of hydrogen fuel cell technology development[J].Technology China,2018(5):11-13. doi:10.3969/j.issn.1673-5129.2018.05.005 | |
9 | 许传博,赵云灏,王晓晨,等 .碳中和愿景下考虑电氢耦合的风光场站氢储能优化配置[J].电力建设,2022,43(1):10-18. |
XU C B, ZHAO Y H, WANG X C,et al .Optimal configuration of hydrogen energy storage for wind and solar power stations considering electricity-hydrogen coupling under carbon neutrality vision[J].Electric Power Construction,2022,43(1):10-18. | |
10 | 张东辉,徐文辉,门锟,等 .储能技术应用场景和发展关键问题[J].南方能源建设,2019,6(3):1-5. |
ZHANG D H, XU W H,MEN K,et al .Application scenarios and key development issues of energy storage [J].Southern Energy Construction, 2019,6(3):1-5. | |
11 | 林俐,李北晨,孙勇,等 .基于高比例新能源消纳的抽水蓄能容量多时间尺度迭代优化配置模型[J].电网与清洁能源,2021,37(1):104-111. doi:10.3969/j.issn.1674-3814.2021.01.015 |
LIN L, LI B C, SUN Y,et al .Multi-time-scale iterative optimal configuration model of pumped storage capacity based on accommodation of high share new energy[J].Power System and Clean Energy,2021,37(1):104-111. doi:10.3969/j.issn.1674-3814.2021.01.015 | |
12 | 刘晓,王洪伟 .基于抽水蓄能的含高比例风电农业配电网优化调度[J].浙江电力,2022,41(1):48-54. |
LIU X, WANG H W .Optimal dispatch of agricultural distribution networks with a high proportion of wind power based on pumped storage[J].Zhejiang Electric Power,2022,41(1):48-54. | |
13 | 李晓鹏,李岩,刘舒然,等 .基于可变速抽水蓄能技术提升区域电网新能源消纳水平的研究[J].智慧电力,2021,49(10):52-58. doi:10.3969/j.issn.1673-7598.2021.10.009 |
LI X P, LI Y, LIU S R,et al .Research on promotion of renewable energy integration into regional power grid by variable speed pumped storage technology[J].Smart Power,2021,49(10):52-58. doi:10.3969/j.issn.1673-7598.2021.10.009 | |
14 | 陈永翀,李爱晶,刘丹丹,等 .储能技术在能源互联网系统中应用与发展展望[J].电器与能效管理技术,2015(24):39-44. doi:10.3969/j.issn.1001-5531.2015.24.007 |
CHEN Y C, LI A J, LIU D D,et al .Application and development prospect of energy storage in energy Internet system[J].Electrical Appliances and Energy Efficiency Management Technology,2015(24):39-44. doi:10.3969/j.issn.1001-5531.2015.24.007 | |
15 | 金晨,任大伟,肖晋宇,等 .支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J].中国电力,2021,54(8):164-174. |
JIN C, REN D W, XIAO J Y,et al .Optimal planning of source network storage flexible resources of power system supporting carbon neutrality goal[J].China Electric Power,2021,54(8):164-174. | |
16 | 陈港欣,孙现众,张熊,等 .高功率锂离子电池研究进展[J].工程科学学报,2022,44(4):612-624. doi:10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014 |
CHEN G X, SUN X Z, ZHANG X,et al .Research progress in high-power lithium-ion batteries[J].Journal of Engineering Science,2022,44(4):612-624. doi:10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014 | |
17 | 陈海生,凌浩恕,徐玉杰 .能源革命中的物理储能技术[J].中国科学院院刊,2019,34(4):450-459. |
CHEN H S, LING H S, XU Y J .Physical energy storage in the energy revolution[J].Journal of the Chinese Academy of Sciences,2019,34(4):450-459. | |
18 | 李洋洋,邓欣涛, 古俊杰,等 .碱性水电解制氢系统建模综述及展望[J].汽车工程,2022,44(4):567-582. |
LI Y Y, DENG X T, GU J J,et al .Overview and prospect of modeling for alkaline water electrolysis hydrogen production system[J].Automotive Engineering,2022,44(4):567-582. | |
19 | 刘玮,万燕鸣,熊亚林,等 .碳中和目标下电解水制氢关键技术及价格平准化分析[J].电工技术学报,2022,37(11):2888-2896. |
LIU W, WAN Y M, XIONG Y L,et al .Key technologies and price leveling analysis of hydrogen production from electrolytic water under carbon neutrality target[J].Journal of Electrical Engineering,2022,37(11):2888-2896. | |
20 | 王培灿,万磊,徐子昂,等 .碱性膜电解水制氢技术现状与展望[J].化工学报,2021,72(12):6161-6175. doi:10.11949/0438-1157.20211264 |
WANG P C, WAN L, XU Z A,et al .Current status and prospects of hydrogen production technology by alkaline membrane electrolysis of water[J].Journal of Chemical Engineering,2021,72(12):6161-6175. doi:10.11949/0438-1157.20211264 | |
21 | 丁显,冯涛,何广利,等 .风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J].储能科学与技术,2022,11(10):3275-3284. |
DING X, FENG T, HE G L,et al .Research progress on the influence of wind photovoltaic dynamic power sources on hydrogen production electrolysis cells using electrolytic water[J].Energy Storage Science and Technology,2022,11(10):3275-3284. | |
22 | 胡兵,徐立军,何山,等 .碳达峰与碳中和目标下PEM电解水制氢研究进展[J].化工进展,2022,41(9):4595-4604. |
HU B, XU L J, HE S,et al .Research progress of hydrogen production from PEM water electrolysis under the target of carbon peaking and carbon neutrality[J].Progress in Chemical Industry,2022,41(9):4595-4604. | |
23 | 骈松,孙邦兴,杨华 .基于可再生能源纯水电解制氢技术展望[J].山东化工,2020,49(15):64-65. doi:10.3969/j.issn.1008-021X.2020.15.026 |
PIAN S, SUN B X, YANG H .Prospects for pure water electrolysis hydrogen production technology based on renewable energy[J].Shandong Chemical Industry,2020, 49(15):64-65. doi:10.3969/j.issn.1008-021X.2020.15.026 | |
24 | 米万良,荣峻峰 .质子交换膜(PEM)水电解制氢技术进展及应用前景[J].石油炼制与化工,2021,52(10):78-87. doi:10.3969/j.issn.1005-2399.2021.10.013 |
MI W L, RONG J F .Progress and application prospects of proton exchange membrane (PEM) water electrolysis hydrogen production technology[J].Petroleum Refining and Chemical Industry,2021,52(10):78-87. doi:10.3969/j.issn.1005-2399.2021.10.013 | |
25 | 陈婷,王绍荣 .固体氧化物电解池电解水研究综述[J].陶瓷学报,2014,35(1):1-6. doi:10.3969/j.issn.1000-2278.2014.01.001 |
CHEN T, WANG S R .Review of research on solid oxide electrolytic cell for water electrolysis[J].Journal of Ceramics,2014,35(1):1-6. doi:10.3969/j.issn.1000-2278.2014.01.001 | |
26 | TANC B, ARAT H T, BALTACIOGLU E,et al .Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J].International Journal of Hydrogen Energy,2019,44(20):10120-10128. doi:10.1016/j.ijhydene.2018.10.112 |
27 | SHARAF O Z, ORHAN M F .An overview of fuel cell technology:fundamentals and applications[J].Renewable and Sustainable Energy Reviews,2014,32:810-853. doi:10.1016/j.rser.2014.01.012 |
28 | 刘应都,郭红霞,欧阳晓平 .氢燃料电池技术发展现状及未来展望[J].中国工程科学,2021,23(4):162-171. doi:10.15302/j-sscae-2021.04.019 |
LIU Y D, GUO H X, OUYANG X P .The current development status and future prospects of hydrogen fuel cell technology[J].Chinese Engineering Science,2021,23(4):162-171. doi:10.15302/j-sscae-2021.04.019 | |
29 | 彭湃,程汉湘,陈杏灿,等 .质子交换膜燃料电池的数学模型及其仿真研究[J].电源技术,2017,41(3):399-402. doi:10.3969/j.issn.1002-087X.2017.03.020 |
PENG P, CHENG H X, CHEN X C,et al .Mathematical model and simulation study of proton exchange membrane fuel cells[J].Power Technology,2017,41(3): 399-402. doi:10.3969/j.issn.1002-087X.2017.03.020 | |
30 | 朱明原,刘文博,刘杨,等 .氢能与燃料电池关键科学技术:挑战与前景[J].上海大学学报(自然科学版),2021,27(3):411-443. |
ZHU M Y, LIU W B, LIU Y,et al .Key science and technology of hydrogen energy and fuel cells:challenges and prospects[J].Journal of Shanghai University (Natural Science Edition),2021,27(3):411-443. | |
31 | 皇甫宜耿,石麒,李玉忍 .质子交换膜燃料电池系统建模仿真与控制[J].西北工业大学学报,2015,33(4):682-687. doi:10.3969/j.issn.1000-2758.2015.04.027 |
HUANGFU Y G, SHI Q, LI Y R .Modeling, simulation and control of proton exchange membrane fuel cell systems[J].Journal of Northwest University of Technology,2015,33(4):682-687. doi:10.3969/j.issn.1000-2758.2015.04.027 | |
32 | 邵志刚,衣宝廉 .氢能与燃料电池发展现状及展望[J].中国科学院院刊, 2019,34(4):469-477. |
SHAO Z G, YI B L .Current status and prospects of hydrogen energy and fuel cell development[J].Journal of the Chinese Academy of Sciences,2019,34(4):469-477. |
[1] | 张瑞宇, 王雨晴, 任佳伟. 基于丙烷催化部分氧化的微管式固体氧化物燃料电池系统特性研究[J]. 发电技术, 2024, 45(3): 486-493. |
[2] | 龚思琦, 云再鹏, 许明, 敖乐, 李初福, 黄凯, 孙晨. 基于三元催化剂的固体氧化物燃料电池尾气催化燃烧数值模拟[J]. 发电技术, 2024, 45(2): 331-340. |
[3] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[4] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[5] | 王博斐, 肖浩哲, 李国豪, 修文恒, 莫云浩, 朱铭杰, 吴震. 基于控制目标的氢-电混动系统能量管理策略综述[J]. 发电技术, 2023, 44(4): 452-464. |
[6] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[7] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[8] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[9] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[10] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[11] | 吴磊, 彭黎菊, 李爽, 史翊翔, 蔡宁生. 百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析[J]. 发电技术, 2023, 44(3): 350-360. |
[12] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[13] | 王海光, 刘永峰, 张军. 氮掺杂介孔碳负载钴催化剂的制备及其脱除富氢气体CO性能研究[J]. 发电技术, 2023, 44(3): 373-381. |
[14] | 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究[J]. 发电技术, 2023, 44(2): 143-154. |
[15] | 王海光, 刘永峰, 张军. 富氢气体脱除CO催化剂的制备及性能研究[J]. 发电技术, 2022, 43(6): 901-907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||