发电技术 ›› 2023, Vol. 44 ›› Issue (3): 350-360.DOI: 10.12096/j.2096-4528.pgt.22078
吴磊1,2, 彭黎菊3, 李爽1,2, 史翊翔1,2, 蔡宁生1,2
收稿日期:
2022-12-03
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
李爽
作者简介:
基金资助:
Lei WU1,2, Liju PENG3, Shuang LI1,2, Yixiang SHI1,2, Ningsheng CAI1,2
Received:
2022-12-03
Published:
2023-06-30
Online:
2023-06-30
Contact:
Shuang LI
Supported by:
摘要:
依托Aspen Plus平台建立了百千瓦级质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)热电联产系统模型,该模型由燃料处理单元、热回收单元与PEMFC单元构成。燃料处理单元关键设备模型依据反应动力学参数搭建,PEMFC电堆采用Aspen Custom Modeler自定义模型。验证了关键设备模型的准确性,并分析了稳态条件下设备运行参数对系统性能的影响,结果表明:在以电定热运行模式下,可适当减少燃烧天然气进料或者降低重整原料水碳比,以提高系统的电效率与?效率。此外,可调节变压吸附(pressure swing adsorption,PSA)至PEMFC管路阀门,增大电堆阳极进气压力以提高发电量,但不建议增大电堆阴极进气压力,这会导致系统辅助设备耗电量上升、净电效率下降。以热定电时,可采取相反的调节方式,降低燃烧烟气与PEMFC尾气的排放温度,提高系统热效率。研究结果可为调整PEMFC热电联产系统工作参数以实现热电输出合理配比提供参考。
中图分类号:
吴磊, 彭黎菊, 李爽, 史翊翔, 蔡宁生. 百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析[J]. 发电技术, 2023, 44(3): 350-360.
Lei WU, Liju PENG, Shuang LI, Yixiang SHI, Ningsheng CAI. Simulation and Analysis of Steady State Characteristics of Hundred Kilowatt Proton Exchange Membrane Fuel Cell Combined Heat and Power System Based on Hydrogen Production From Natural Gas[J]. Power Generation Technology, 2023, 44(3): 350-360.
Y | X | E/(kJ⋅mol-1) | Tref / K |
---|---|---|---|
k1/(kmol⋅Pa0.5⋅kg-1⋅h-1) | 0.058 2 | 240.10 | 648 |
k2/(kmol⋅Pa-1⋅kg-1⋅h-1) | 7.558×10-5 | 67.13 | 648 |
k3/(kmol⋅Pa0.5⋅kg-1⋅h-1) | 6.935×10-3 | 243.90 | 648 |
2.96×10-7 | 82.90 | 648 | |
0.415 2 | 88.68 | 823 | |
1.79×10-6 | 38.28 | 823 | |
KCO/Pa-1 | 4.091×10-4 | 70.65 | 648 |
表1 CH4水蒸气重整化学反应动力参数
Tab. 1 Kinetic parameters of CH4 steam reforming chemical reaction
Y | X | E/(kJ⋅mol-1) | Tref / K |
---|---|---|---|
k1/(kmol⋅Pa0.5⋅kg-1⋅h-1) | 0.058 2 | 240.10 | 648 |
k2/(kmol⋅Pa-1⋅kg-1⋅h-1) | 7.558×10-5 | 67.13 | 648 |
k3/(kmol⋅Pa0.5⋅kg-1⋅h-1) | 6.935×10-3 | 243.90 | 648 |
2.96×10-7 | 82.90 | 648 | |
0.415 2 | 88.68 | 823 | |
1.79×10-6 | 38.28 | 823 | |
KCO/Pa-1 | 4.091×10-4 | 70.65 | 648 |
组分 | 物质摩尔分数/% | 相对误差/% | ||
---|---|---|---|---|
进口 | 出口参考值 | 出口模拟值 | ||
CH4 | 21.69 | 3.58 | 3.53 | -1.66 |
H2O | 74.41 | 34.09 | 33.96 | -0.39 |
CO2 | 1.10 | 5.86 | 5.91 | 0.88 |
CO | 0 | 9.09 | 9.07 | -0.15 |
H2 | 1.20 | 47.14 | 47.29 | 0.33 |
N2 | 0.33 | 0.24 | 0.24 | -1.57 |
C2H6 | 0.78 | 0 | 2.70×10-4 | — |
C3H8 | 0.42 | 0 | 2.70×10-8 | — |
C4H10 | 0.06 | 0 | 2.60×10-12 | — |
表2 NGSR模拟值与参考值对比
Tab. 2 Comparison of NGSR simulation values with reference values
组分 | 物质摩尔分数/% | 相对误差/% | ||
---|---|---|---|---|
进口 | 出口参考值 | 出口模拟值 | ||
CH4 | 21.69 | 3.58 | 3.53 | -1.66 |
H2O | 74.41 | 34.09 | 33.96 | -0.39 |
CO2 | 1.10 | 5.86 | 5.91 | 0.88 |
CO | 0 | 9.09 | 9.07 | -0.15 |
H2 | 1.20 | 47.14 | 47.29 | 0.33 |
N2 | 0.33 | 0.24 | 0.24 | -1.57 |
C2H6 | 0.78 | 0 | 2.70×10-4 | — |
C3H8 | 0.42 | 0 | 2.70×10-8 | — |
C4H10 | 0.06 | 0 | 2.60×10-12 | — |
项目 | 各组分摩尔分数/% | |||||
---|---|---|---|---|---|---|
CH4 | N2 | CO2 | CO | H2 | H2O | |
进料 | 3.580 | 0.238 | 5.861 | 9.092 | 47.141 | 34.088 |
出口参考值 | 3.580 | 0.238 | 12.300 | 2.652 | 53.582 | 27.648 |
出口模拟值 | 3.580 | 0.238 | 12.120 | 2.833 | 54.400 | 27.829 |
表3 WGS反应器模型验证结果
Tab. 3 Verification results of WGS reactor model
项目 | 各组分摩尔分数/% | |||||
---|---|---|---|---|---|---|
CH4 | N2 | CO2 | CO | H2 | H2O | |
进料 | 3.580 | 0.238 | 5.861 | 9.092 | 47.141 | 34.088 |
出口参考值 | 3.580 | 0.238 | 12.300 | 2.652 | 53.582 | 27.648 |
出口模拟值 | 3.580 | 0.238 | 12.120 | 2.833 | 54.400 | 27.829 |
参数 | A/cm2 | N | l/μm | jmax/(A/cm2) | Rc/Ω | Tcell/K |
---|---|---|---|---|---|---|
取值 | 232 | 35 | 178 | 1.5 | 0.000 3 | 353.15 |
表4 PEMFC验证模型参数
Tab. 4 Validation model parameters of PEMFC
参数 | A/cm2 | N | l/μm | jmax/(A/cm2) | Rc/Ω | Tcell/K |
---|---|---|---|---|---|---|
取值 | 232 | 35 | 178 | 1.5 | 0.000 3 | 353.15 |
组分 | CH4 | C2H6 | C3H8 | C4H10 | C5H12 |
---|---|---|---|---|---|
体积分数/% | 92.70 | 2.09 | 0.27 | 0.12 | 0.08 |
组分 | C6H14 | H2 | O2 | CO2 | N2 |
体积分数/% | 0.03 | 0.01 | 0.35 | 1.90 | 2.45 |
表5 天然气组分
Tab. 5 Natural gas components
组分 | CH4 | C2H6 | C3H8 | C4H10 | C5H12 |
---|---|---|---|---|---|
体积分数/% | 92.70 | 2.09 | 0.27 | 0.12 | 0.08 |
组分 | C6H14 | H2 | O2 | CO2 | N2 |
体积分数/% | 0.03 | 0.01 | 0.35 | 1.90 | 2.45 |
参数 | A/cm2 | N | l/μm | jmax/(A/cm2) | Tcell/K |
---|---|---|---|---|---|
取值 | 943.8 | 225 | 20 | 1.5 | 353.15 |
表6 百千瓦级PEMFC电堆模型参数
Tab. 6 Hundred kilowatt PEMFC stack model parameters
参数 | A/cm2 | N | l/μm | jmax/(A/cm2) | Tcell/K |
---|---|---|---|---|---|
取值 | 943.8 | 225 | 20 | 1.5 | 353.15 |
1 | 陈骞,周竞,陆翌,等 .一种适用于燃料电池-超级电容发电系统的控制策略[J].浙江电力,2021,40(1):116-122. doi:10.19585/j.zjdl.202101017 |
CHEN Q, ZHOU J, LU Y,et al .A control strategy for fuel cell-ultracapacitor power generation system[J].Zhejiang Electric Power,2021,40(1):116-122. doi:10.19585/j.zjdl.202101017 | |
2 | 刘至纯,李华强,王俊翔,等 .基于多时间尺度综合需求响应策略的综合能源系统优化运行[J].电力建设,2022,43(9):54-65. doi:10.12204/j.issn.1000-7229.2022.09.006 |
LIU Z C, LI H Q, WANG J X,et al .Optimal operation of integrated energy system based on multi-time scale integrated demand response strategy[J].Electric Power Construction,2022,43(9):54-65. doi:10.12204/j.issn.1000-7229.2022.09.006 | |
3 | 宋鹏飞,单彤文,李又武,等 .以天然气为原料的燃料电池分布式供能技术路径研究[J].现代化工,2020,40(9):14-19. doi:10.16606/j.cnki.issn0253-4320.2020.09.004 |
SONG P F, SHAN T W, LI Y W,et al .Founding paths to supply energy in a distributed way by fuel cell with natural gas as raw materials[J].Modern Chemical Industry,2020,40(9):14-19. doi:10.16606/j.cnki.issn0253-4320.2020.09.004 | |
4 | 张东,张瑞,张彬,等 .基于质子交换膜燃料电池的冷热电联产系统研究进展[J].化工进展,2022,41(3):1608-1621. doi:10.16085/j.issn.1000-6613.2021-1740 |
ZHANG D, ZHANG R, ZHANG B,et al .Research progress of combined cooling heat and power systems based on PEMFC[J].Chemical Industry and Engineering Progress,2022,41(3):1608-1621. doi:10.16085/j.issn.1000-6613.2021-1740 | |
5 | 李林,刘彤宇,李爽,等 .甲醇重整制氢燃料电池发电研究进展[J].发电技术,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116 |
LI L, LIU T Y, LI S,et al .Research progress of hydrogen production by methanol reforming for fuel cell power generation[J].Power Generation Technology,2022,43(1):44-53. doi:10.12096/j.2096-4528.pgt.21116 | |
6 | 杨馥源,田雪沁,徐彤,等 .面向碳中和电力系统转型的电氢枢纽灵活性应用[J].电力建设,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 |
YANG F Y, TIAN X Q, XU T,et al .Flexibility of electro-hydrogen hub for power system transformation under the goal of carbon neutrality[J].Electric Power Construction,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 | |
7 | 蒙浩,吕泽伟,韩敏芳 .日本家用燃料电池热电联供系统商业化应用分析[J].中外能源,2018,23(10):1-8. |
MENG H, LU Z W, HAN M F .Commerical application of household fuel cell CHP system in Japan[J].Sino-Global Energy,2018,23(10):1-8. | |
8 | 张彦,陶毅刚,张韬,等 .氢能与电力系统融合发展研究[J].中外能源,2021,26(9):19-28. |
ZHANG Y, TAO Y G, ZHANG T,et al .Research on integrated development of hydrogen energy and power system[J].Sino-Global Energy,2021,26(9):19-28. | |
9 | 于蓬,魏添,王健,等 .氢燃料电池热电联供系统的关键问题研究[J].农业装备与车辆工程,2020,58(8):22-27. doi:10.3969/j.issn.1673-3142.2020.08.006 |
YU P, WEI T, WANG J,et al .Research on key problems of combined heat and power system of hydrogen fuel cell[J].Agricultural Equipment & Vehicle Engineering,2020,58(8):22-27. doi:10.3969/j.issn.1673-3142.2020.08.006 | |
10 | 神瑞宝,代贤忠,蒋东方,等 .日本家用燃料电池热电联供系统在中国应用的经济性分析[J].中国电力,2020,53(10):74-79. doi:10.11930/j.issn.1004-9649.202006049 |
SHEN R B, DAI X Z, JIANG D F,et al .Economic analysis of the application of Japan’s household fuel cell CHP system in China[J].Sino-Global Energy,2020,53(10):74-79. doi:10.11930/j.issn.1004-9649.202006049 | |
11 | XIE D, WANG Z, LIAN J,et al .Energy and exergy analysis of a fuel cell based micro combined heat and power cogeneration system[J].Energy & Buildings,2012,50:266-272. doi:10.1016/j.enbuild.2012.03.047 |
12 | BARELLI L, BIDINI G, GALLORINI F,et al .An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell[J].Applied Energy,2011,88(12):4334-4342. doi:10.1016/j.apenergy.2011.04.059 |
13 | ELLAMLA H R, STAFFELL I, BUJLO P,et al .Current status of fuel cell based combined heat and power systems for residential sector[J].Journal of Power Sources,2015,293:312-328. doi:10.1016/j.jpowsour.2015.05.050 |
14 | ZOU W J, SHEN K Y, JUNG S,et al .Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system[J].Energy,2021,229:120698. doi:10.1016/j.energy.2021.120698 |
15 | YANG F, HUANG N, SUN Q,et al .Modeling and techno-economic analysis of the heat pump-integrated PEMFC-based micro-CHP system[J].Energy Procedia,2018,152:83-88. doi:10.1016/j.egypro.2018.09.063 |
16 | KWAN T H, SHEN Y, YAO Q .An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system[J].Applied Energy,2019,251:113318. doi:10.1016/j.apenergy.2019.113318 |
17 | CHEN X, LIU Q, XU J,et al .Thermodynamic study of a hybrid PEMFC-solar energy multi-generation system combined with SOEC and dual Rankine cycle[J].Energy Conversion and Management,2020,226:113512. doi:10.1016/j.enconman.2020.113512 |
18 | CHANG H, WAN Z, ZHENG Y,et al .Energy analysis of a hybrid PEMFC:solar energy residential micro-CCHP system combined with an organic Rankine cycle and vapor compression cycle[J].Energy Conversion and Management,2017,142:374-384. doi:10.1016/j.enconman.2017.03.057 |
19 | CHEN X, GONG G, WAN Z,et al .Performance study of a dual power source residential CCHP system based on PEMFC and PTSC[J].Energy Conversion and Management,2016,119:163-176. doi:10.1016/j.enconman.2016.04.054 |
20 | CHOMPUPUN T, LIMTRAKUL S, VATANATHAM T,et al .Experiments,modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming[J].Chemical Engineering and Processing,2018,134:124-140. doi:10.1016/j.cep.2018.10.007 |
21 | XU J, FROMENT G F .Methane steam reforming,methanation and water-gas shift:Intrinsic kinetics[J].AIChE Journal,1989,35(1):88-96. doi:10.1002/aic.690350109 |
22 | 孙兰义 .化工流程模拟实训[M].2版.北京:化学工业出版社,2017:254-257. doi:10.2991/msam-17.2017.66 |
SUN L Y .Chemical process simulation training[M].2nd ed.Beijing:Chemical Industry Press,2017:254-257. doi:10.2991/msam-17.2017.66 | |
23 | 贺学文 .天然气蒸汽转化:PSA联合制氢中转化反应器模型研究及系统开发应用[D].北京:北京化工大学,2001. |
HE X W .Dynamic simulation model study of reforming reactor for natural gas steam reforming:PSA union plant and its development and application[D].Beijing:Beijing University of Chemical Technology,2001. | |
24 | 陈培 .天然气蒸气重整制氢转化炉辐射段数值模拟研究[D].北京:中国石油大学,2016. |
CHEN P .Numerical simulation study of radiation chamber in methane-steam reforming furance[D].Beijing:China University of Petroleum,2016. | |
25 | SMITH R, MURUGANANDAM L, SHEKHAR S M .CFD analysis of water gas shift membrane reactor[J].Chemical Engineering Research & Design,2011,89(11):2448-2456. doi:10.1016/j.cherd.2011.02.031 |
26 | 谢东升 .大型天然气蒸汽转化制氢工艺全流程模拟及优化[J].炼油技术与工程,2017,47(5):23-27. doi:10.3969/j.issn.1002-106X.2017.05.006 |
XIE D S .Simulation and optimization of large natural gas steam reforming process for hydrogen generation[J].Petroleum Refinery Engineering,2017,47(5):23-27. doi:10.3969/j.issn.1002-106X.2017.05.006 | |
27 | KHAN M J, IQBAL M T .Modelling and analysis of electro-chemical,thermal,and reactant flow dynamics for a pem fuel cell system[J].Fuel Cells,2005,5(4):463-475. doi:10.1002/fuce.200400072 |
28 | ABDIN Z, WEBB C J, GRAY E M .PEM fuel cell model and simulation in Matlab-Simulink based on physical parameters[J].Energy,2016,116:1131-1144. doi:10.1016/j.energy.2016.10.033 |
29 | JIA J, WANG Y, LI Q,et al .Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell[J].IEEE Transactions on Energy Conversion,2009,24(1):283-291. doi:10.1109/tec.2008.2011837 |
30 | AUTHAYANUN S, AUNSUP P, PATCHARAVORACHOT Y,et al .Theoretical analysis of a biogas-fed PEMFC system with different hydrogen purifications:conventional and membrane-based water gas shift processes[J].Energy Conversion & Management,2014,86:60-69. doi:10.1016/j.enconman.2014.04.093 |
31 | FRANCESCONI J A, MUSSATI M C, AGUIRRE P A .Effects of PEMFC operating parameters on the performance of an integrated ethanol processor[J].International Journal of Hydrogen Energy,2010,35(11):5940-5946. doi:10.1016/j.ijhydene.2009.12.103 |
32 | BALLARD .FCgen HPS specification sheet [EB/OL].[2022-01-13].. doi:10.1016/s1464-2859(20)30475-2 |
[1] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
[2] | 于松源, 张峻松, 元志伟, 房方. 计及热惯性的热电联产虚拟电厂韧性提升策略[J]. 发电技术, 2023, 44(6): 758-768. |
[3] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
[4] | 王志云, 赵玉柱, 王学栋, 张元舒. 调峰机制下供热汽轮机中压调门调节特性试验研究[J]. 发电技术, 2022, 43(6): 970-976. |
[5] | 左启尧, 唐震, 李慧勇, 张颖, 王江峰. 电网调峰背景下汽轮机低压缸零出力技术现状综述[J]. 发电技术, 2022, 43(4): 645-654. |
[6] | 薛凯, 王义函, 陈衡, 徐钢, 雷兢. 槽式太阳能辅助生物质热电联产系统热力学性能分析[J]. 发电技术, 2021, 42(6): 653-664. |
[7] | 刘忠秋,张国柱,邱寅晨,张钧泰,王珊,刘明. 热电联产机组集成热泵实现热电解耦的潜力与能耗特性分析[J]. 发电技术, 2019, 40(3): 253-257. |
[8] | 李树明,刘青松,朱小东,平士斌,白贵生. 350 MW超临界热电联产机组灵活性改造分析[J]. 发电技术, 2018, 39(5): 449-454. |
[9] | 李奕. 2×300MW汽轮机双机循环水余热供热系统[J]. 发电技术, 2018, 39(3): 244-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||