发电技术 ›› 2023, Vol. 44 ›› Issue (3): 331-339.DOI: 10.12096/j.2096-4528.pgt.22186
赵连鹏, 张振扬, 安刚, 杨申音
收稿日期:
2023-01-03
出版日期:
2023-06-30
发布日期:
2023-06-30
作者简介:
基金资助:
Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG
Received:
2023-01-03
Published:
2023-06-30
Online:
2023-06-30
Supported by:
摘要:
氢能绿色无污染的特点使其成为实现我国“碳达峰”“碳中和”目标的重要手段,随着一系列相关政策的相继实施,氢能发展即将步入快车道。实现氢能低能耗大规模储运是目前亟待解决的技术瓶颈,混合冷剂氢液化工艺是解决该问题的有效手段。对当前混合冷剂氢液化工艺进行了统计分析,按照混合冷剂制冷温区介绍了不同研究者的基本技术路线以及混合冷剂组分优化,总结了当前混合冷剂氢液化工艺的技术特点,提出了未来混合冷剂氢液化工艺的发展建议,可为氢能高效大规模储运技术提供有效支持,加速实现氢能的大规模商用。
中图分类号:
赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339.
Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant[J]. Power Generation Technology, 2023, 44(3): 331-339.
液化循环 | 产量/(t/d) | 预冷温度/K | 功耗/(kW⋅h/kg) | 㶲效率/% |
---|---|---|---|---|
混合冷剂预冷+级联式制冷[ | 4.2 | 75 | 11.85 | — |
混合冷剂预冷+Claude循环[ | 86.4 | 75 | 6.152 | 47.1 |
混合冷剂预冷+级联式制冷[ | 100 | 80 | 5.35 | 54.02 |
混合冷剂预冷+节流[ | 0.048 | 75 | 3.96(无正仲氢转化) | — |
混合冷剂预冷+逆布雷顿循环[ | 50 | 100 | — | — |
混合冷剂预冷+级联式制冷[ | 100 | 75 | 7.69 | 39.5 |
混合冷剂预冷+Claude循环[ | 51.5 | 114 | 5.7 | — |
混合冷剂预冷+Claude循环[ | 7.25 | 118 | 6.56 | 48.99 |
表 1 典型混合冷剂预冷氢液化循环能耗及效率
Tab. 1 Energy consumption and efficiency of typical pre-cooled hydrogen liquefaction cycle with mixed refrigerants
液化循环 | 产量/(t/d) | 预冷温度/K | 功耗/(kW⋅h/kg) | 㶲效率/% |
---|---|---|---|---|
混合冷剂预冷+级联式制冷[ | 4.2 | 75 | 11.85 | — |
混合冷剂预冷+Claude循环[ | 86.4 | 75 | 6.152 | 47.1 |
混合冷剂预冷+级联式制冷[ | 100 | 80 | 5.35 | 54.02 |
混合冷剂预冷+节流[ | 0.048 | 75 | 3.96(无正仲氢转化) | — |
混合冷剂预冷+逆布雷顿循环[ | 50 | 100 | — | — |
混合冷剂预冷+级联式制冷[ | 100 | 75 | 7.69 | 39.5 |
混合冷剂预冷+Claude循环[ | 51.5 | 114 | 5.7 | — |
混合冷剂预冷+Claude循环[ | 7.25 | 118 | 6.56 | 48.99 |
液化循环 | 产量/(t/d) | 功耗/ (kW⋅h/kg) | 㶲效率/% |
---|---|---|---|
三级混合冷剂制冷循环[ | 80 | 6.45 | 47.2% |
两级混合冷剂制冷循环[ | 300 | 3.258 | 67.53 |
两级混合冷制制冷循环[ | 90 | 6.47 | 45.5 |
两级混合冷剂制冷循环[ | 296 | 4.165 | 62.54 |
LNG预冷+混合冷剂深冷[ | 100 | 8.85 | — |
三级混合冷剂制冷循环[ | 50 | 9.477 | — |
表 2 典型混合冷剂深冷氢液化循环能耗及效率
Tab. 2 Energy consumption and efficiency of typical deep-cooled hydrogen liquefaction cycle with mixed refrigerants
液化循环 | 产量/(t/d) | 功耗/ (kW⋅h/kg) | 㶲效率/% |
---|---|---|---|
三级混合冷剂制冷循环[ | 80 | 6.45 | 47.2% |
两级混合冷剂制冷循环[ | 300 | 3.258 | 67.53 |
两级混合冷制制冷循环[ | 90 | 6.47 | 45.5 |
两级混合冷剂制冷循环[ | 296 | 4.165 | 62.54 |
LNG预冷+混合冷剂深冷[ | 100 | 8.85 | — |
三级混合冷剂制冷循环[ | 50 | 9.477 | — |
1 | 赵永志,蒙波,陈霖新,等 .氢能源的利用现状分析[J].化工进展,2015,34(9):3248-3255. doi:10.16085/j.issn.1000-6613.2015.09.007 |
ZHAO Y Z, MENG B, CHEN L X,et al .Utilization status of hydrogen energy[J].Chemical Industry and Engineering Progress,2015,34(9):3248-3255. doi:10.16085/j.issn.1000-6613.2015.09.007 | |
2 | 李健强,余光正,汤波,等 .考虑风光利用率和含氢能流的多能流综合能源系统规划[J].电力系统保护与控制,2021,49(14):11-20. |
LI J Q, YU G Z, TANG B,et al .Multi-energy flow integrated energy system planning considering wind and solar utilization and containing hydrogen energy flow[J].Power System Protection and Control,2021,49(14):11-20. | |
3 | 刘海涛,朱海南,李丰硕,等 .计及碳成本的电-气-热-氢综合能源系统经济运行策略[J].电力建设,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 |
LIU H T, ZHU H N, LI F S,et al .Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J].Electric Power Construction,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 | |
4 | 顾玖,王晨磊,解大 .电力市场环境下的电-氢一体化站优化运行[J].电力科学与技术学报,2022,37(1):130-139. |
GU J, WANG C L, XIE D,et al .Research on optimal operation of electricity-hydrogen integrated station in electricity market environment[J].Journal of Electric Power Science and Technology,2022,37(1):130-139. | |
5 | 严思韵,王晨,周登极 .含氢能气网掺混输运的综合能源系统优化研究[J].电力工程技术,2021,40(1):10-16. doi:10.12158/j.2096-3203.2021.01.002 |
YAN S Y, WANG C, ZHOU D J .Optimization of integrated electricity and gas system considering hydrogen-natural-gas mixture transportation [J].Electric Power Engineering Technology,2021,40(1):10-16. doi:10.12158/j.2096-3203.2021.01.002 | |
6 | 光明日报 .碳达峰、碳中和的经济学解读[EB/OL].(2021-06-22)[2022-02-17].. |
Daily Guangming .Economic interpretation of carbon peaking and carbon neutralization[EB/OL].(2021-06-22)[2022-02-17].. | |
7 | 中国政府网 .氢能产业发展中长期规划(2021—2035年)[EB/OL].(2022-03-24)[2022-03-30].. |
China Government Network .Medium and long term plan for the development of hydrogen energy industry(2021-2035)[EB/OL].(2022-03-24)[2022-03-30].. | |
8 | 雷超,李韬 .碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI D .Key Technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J].Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
9 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under “double carbon” circumstance[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
10 | 梁前超,赵建锋,梁一帆,等 .储氢技术发展现状[J].海军工程大学学报,2022,34(3):92-101. doi:10.7495/j.issn.1009-3486.2022.03.016 |
LIANG Q C, ZHAO J F, LIANG Y F,et al .Progress in hydrogen storage technology[J].Journal of Naval University of Engineering,2022,34(3):92-101. doi:10.7495/j.issn.1009-3486.2022.03.016 | |
11 | 陈双涛,周楷淼,赖天伟,等 .大规模氢液化方法与装置[J].真空与低温,2020,26(3):173-178. doi:10.3969/j.issn.1006-7086.2020.03.001 |
CHEN S T, ZHOU K M, LAI T W,et al .Large-scale hydrogen liquefaction methods and devices[J].Vacuum & Cryogenics,2020,26(3):173-178. doi:10.3969/j.issn.1006-7086.2020.03.001 | |
12 | DECKER L .Overview on cryogenic refrigeration cycles for large scale HTS applications[C]//Processding of 20th International Cryogenic Engineering Conference,New Delhi,India.IEEE,2016:561-570. |
13 | AZIZ M .Liquid hydrogen:a review on liquefaction,storage,transportation,and safety[J].Energies,2021,14(18):5917-5926. doi:10.3390/en14185917 |
14 | OHIRA K .A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project[J].Proceedings of AIP Conference,2004,710:27-34. doi:10.1063/1.1774663 |
15 | AASADNIA M, MEHRPOOYA M .Large-scale liquid hydrogen production methods and approaches:a review[J].Applied Energy,2018,212:57-83. doi:10.1016/j.apenergy.2017.12.033 |
16 | KRASAE-IN S, STANG J H, NEKSA P .Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J].International Journal of Hydrogen Energy,2010,35(10):4524-4533. doi:10.1016/j.ijhydene.2010.02.109 |
17 | PODBIELNIAK W .Art of refrigeration:2041725 U S[P].1936-07-14. |
18 | VENKATARATHNAM G, TIMMERHAUS K D .Cryogenic mixed refrigerant processes[M].New York:Springer Press,2008. |
19 | 张振扬,妙丛,王峰 .规模化氢液化装置现状及未来技术路线分析[J].化工进展,2022,41(12):1-17. |
ZHANG Z Y, MIAO C, WANG F E .Analysis of present status and future technical route on large-scale hydrogen liquefaction plant[J].Chemical History and Engineering Progress,2022,41(12):1-17. | |
20 | ANSARINASAB H, MEHRPOOY M, MOHAMMADI A .Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system[J].Journal of Cleaner Production,2017,144:248-259. doi:10.1016/j.jclepro.2017.01.014 |
21 | BERSTAD D O, STANG J H, NEKSÅ P .Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling[J].International Journal of Hydrogen Energy,2010,35(10):4512-4523. doi:10.1016/j.ijhydene.2010.02.001 |
22 | KRASAE I S, STANG J H, NEKSA P .Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system[J].International Journal of Hydrogen Energy,2010,35(22):12531-12544. doi:10.1016/j.ijhydene.2010.08.062 |
23 | KRASAE I S, BREDESEN A M, JACOB H S,et al .Simulation and experiment of a hydrogen liquefaction test rig using a multi-component refrigerant refrigeration system[J].International Journal of Hydrogen Energy,2011,36(1):907-919. doi:10.1016/j.ijhydene.2010.09.005 |
24 | KRASAE-IN S, STANG J H, NEKSA P .Exergy analysis on the simulation of a small-scale hydrogen liquefaction test rig with a multi-component refrigerant refrigeration system[J].International Journal of Hydrogen Energy,2010,35(15):8030-8042. doi:10.1016/j.ijhydene.2010.05.049 |
25 | QUACK H, SEEMANN I, KLAUS M,et al .Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen[J].Transactions of the Cryogenic Engineering Conference,2014,120:237-244. doi:10.1063/1.4860707 |
26 | ASADNIA M, MEHRPOOYA M .A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J].International Journal of Hydrogen Energy,2017,42(23):15564-15585. doi:10.1016/j.ijhydene.2017.04.260 |
27 | JACKSON S, BRODAL E .Optimization of a mixed refrigerant based H2 liquefaction pre-cooling process and estimate of liquefaction performance with varying ambient temperature[J].Energies,2021,14(19):6090-6098. doi:10.3390/en14196090 |
28 | 姚余波,陈克平,腾钧杰,等 .混合工质预冷氢液化流程设计与能效分析[J].低温工程,2022(3):64-69. doi:10.3969/j.issn.1000-6516.2022.03.011 |
YAO Y B, CHEN K P, TENG J J,et al .Process design and performance evaluation of a novel hydrogen[J].Cryogenics,2022(3):64-69. doi:10.3969/j.issn.1000-6516.2022.03.011 | |
29 | QUACK H .Conceptual design of a high efficiency large capacity hydrogen liquefier[J].Advanced Cryogenic Engineering,2001,47:255-263. doi:10.1063/1.1472029 |
30 | QYYUM M A, RIAZ A, NAQUASH A .100% saturated liquid hydrogen production:mixed-refrigerant cascaded process with two-stage ortho-to-para hydrogen conversion[J].Energy Conversion and Management,2021,246:114659. doi:10.1016/j.enconman.2021.114659 |
31 | SADAGHIANI M S, MEHRPOOYA M .Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration[J].International Journal of Hydrogen Energy,2017,42(9):6033-6050. doi:10.1016/j.ijhydene.2017.01.136 |
32 | AASADNIA M, MEHRPOOYA M .Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system[J].Journal of Cleaner Production,2018,205:565-588. doi:10.1016/j.jclepro.2018.09.001 |
33 | MEHRPOOYA M, SADAGHIANI M S, HEDAYAT N .A novel integrated hydrogen and natural gas liquefaction process using two multistage mixed refrigerant refrigeration systems[J].International Journal of Energy Research,2019,44(3):1636-1653. doi:10.1002/er.4978 |
34 | FARAMARZI S, NAINIYAN S, MAFI M,et al .A novel hydrogen liquefaction process based on LNG cold energy and mixed refrigerant cycle[J].International Journal of Refrigeration,2021,131:263-274. doi:10.1016/j.ijrefrig.2021.07.022 |
35 | ANSARINASAB H, MEHRPOOYA M, SADEGHZADEH M .An exergy-based investigation on hydrogen liquefaction plant-exergy,exergoeconomic,and exergoenvironmental analyses[J].Journal of Cleaner Production,2019,210:530-541. doi:10.1016/j.jclepro.2018.11.090 |
36 | KIM H .Mixed refrigerant-based simplified hydrogen liquefaction process:energy,exergy,economic,and environmental analysis[J].Journal of Cleaner Production,2022,367:132947. doi:10.1016/j.jclepro.2022.132947 |
37 | 赵敏,厉彦忠 .C3/MRC 液化流程中原料气成分与制冷剂组分配比[J].化工学报,2010,60(S1):50-57. |
ZHAO M, LI Y Z .Analysis for selecting mixed refrigerant composition based on feed natura gas in C3/MRC liquefaction cycle[J].CIESC Journal,2010,60(S1):50-57. | |
38 | BI Y, JU Y .Conceptual design and optimization of a novel hydrogen liquefaction process based on helium expansion cycle integrating with mixed refrigerant pre-cooling[J].International Journal of Hydrogen Energy,2022,47(38):16949-16963. doi:10.1016/j.ijhydene.2022.03.202 |
39 | 王国聪,徐则林,多志丽,等 .混合制冷剂氢气液化工艺优化[J].东北电力大学学报,2021,41(6):61-70. |
WANG G C, XU Z L, DUO Z L,et al .Optimization of mixed refrigerant hydrogen liquefaction process.[J].Journal of Northeast Electric Power University,2021,41(6): 61-70. | |
40 | ZHU J L, WANG G C, LI Y X,et al .Optimization of hydrogen liquefaction process based on parallel genetic algorithm[J].International Journal of Hydrogen Energy,2022,47(63):27038-27048. doi:10.1016/j.ijhydene.2022.06.062 |
41 | SLEITI A K, AL-AMMAR W A I .Systematic thermodynamic approach for designing mixed refrigerants used in hydrogen precooling process[J].International Journal of Hydrogen Energy,2022,47(48):20915-20931. doi:10.1016/j.ijhydene.2022.04.233 |
42 | NAQUASH A, SADAGHIANI M S, HEDAYATET N,et al .Hydrofluoroolefin-based mixed refrigerant for enhanced performance of hydrogen liquefaction process[J].International Journal of Hydrogen Energy,2022,47(98):41648-41662. doi:10.1016/j.ijhydene.2022.02.010 |
[1] | 翟融融, 魏清, 冯凌杰, 孙舸洵. 耦合膜冷凝器的碳捕集系统能耗特性分析[J]. 发电技术, 2023, 44(5): 667-673. |
[2] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[3] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[4] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[5] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[6] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[7] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[8] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[9] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[10] | 张欢, 汪丽, 叶舣, 赵兴雷. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究[J]. 发电技术, 2022, 43(4): 609-617. |
[11] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[12] | 朱凯, 张艳红. “双碳”形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72. |
[13] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
[14] | 邱国华,魏宏鸽,梁秀进,李壮,王丰吉,朱跃. 火电机组脱硫超低排放运行能耗分析与节能运行展望[J]. 发电技术, 2020, 41(5): 510-516. |
[15] | 梁捷, 黄柯颖. 基于家庭用电场景灵敏度分析的空调能耗研究[J]. 发电技术, 2017, 38(6): 85-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||