发电技术 ›› 2024, Vol. 45 ›› Issue (3): 494-507.DOI: 10.12096/j.2096-4528.pgt.23099
韩秀秀1, 魏少鑫1, 汪剑1, 崔超婕1,2, 骞伟中1,2
收稿日期:
2023-08-30
修回日期:
2023-10-25
出版日期:
2024-06-30
发布日期:
2024-07-01
通讯作者:
崔超婕
作者简介:
基金资助:
Xiuxiun HAN1, Shaoxin WEI1, Jian WANG1, Chaojie CUI1,2, Weizhong QIAN1,2
Received:
2023-08-30
Revised:
2023-10-25
Published:
2024-06-30
Online:
2024-07-01
Contact:
Chaojie CUI
Supported by:
摘要:
目的 设计同时具有高质量活性和高体积活性的锂离子电容器(lithium-ion capacitor,LIC)复合正极材料。 方法 借助扫描电子显微镜、透射电子显微镜、康塔全自动比表面和孔径分析仪、四探针测试仪,通过实验分析了颗粒之间的微观形貌、堆叠方式、接触模式和界面特性对复合电极的电导率、电学性质的影响规律。 结果 将介孔活性炭(mesoporous activated carbon,MC)与单分散石墨烯/单壁碳纳米管杂化物(graphene/single-walled carbon nanotube hybrid,GNH)混合,紧密压缩制成锂离子电容器正极材料。GNH均匀地包裹在MC颗粒表面,与MC面对面接触,增大接触面积;而且GNH在MC颗粒之间形成均匀的三维导电网络,提供了快速的电子传导。另外,GNH具有开放结构,会优先吸附电解液离子,与MC界面间存在浓度梯度;同时,GNH具有较高的导电性,与导电性较差的MC界面间存在接触电势差效应。两者共同促使GNH和MC界面之间形成快速的离子和电子双传输路径,促进离子在MC内部的扩散,从而避免了高电流密度下因离子扩散缓慢而造成的容量损失。 结论 添加5% GNH提高了倍率性能,并且在不牺牲堆积密度的前提下同时提高质量和体积能量密度。
中图分类号:
韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507.
Xiuxiun HAN, Shaoxin WEI, Jian WANG, Chaojie CUI, Weizhong QIAN. Preparation and Performance Analysis of High Performance Cathode Material Graphene-Mesoporous Carbon Composites for Lithium-Ion Capacitor[J]. Power Generation Technology, 2024, 45(3): 494-507.
材料 | Ro | Rct | Qct/(×10-7) | Rn | Cn | Wo |
---|---|---|---|---|---|---|
MC | 3.875 | 20.770 | 19.000 | 2.686 00 | 0.040 00 | 37.390 |
GMC-2.5 | 2.916 | 12.270 | 8.588 | 0.317 15 | 0.754 41 | 23.290 |
GMC-5 | 2.729 | 9.688 | 9.970 | 0.339 80 | 0.708 23 | 21.860 |
GMC-10 | 2.712 | 7.582 | 11.270 | 0.360 23 | 0.628 54 | 17.400 |
GNH | 2.495 | 3.197 | 247.000 | 4.582 00 | 0.178 00 | 7.087 |
表1 等效电路拟合结果
Tab. 1 Fitting results of equivalent circuit
材料 | Ro | Rct | Qct/(×10-7) | Rn | Cn | Wo |
---|---|---|---|---|---|---|
MC | 3.875 | 20.770 | 19.000 | 2.686 00 | 0.040 00 | 37.390 |
GMC-2.5 | 2.916 | 12.270 | 8.588 | 0.317 15 | 0.754 41 | 23.290 |
GMC-5 | 2.729 | 9.688 | 9.970 | 0.339 80 | 0.708 23 | 21.860 |
GMC-10 | 2.712 | 7.582 | 11.270 | 0.360 23 | 0.628 54 | 17.400 |
GNH | 2.495 | 3.197 | 247.000 | 4.582 00 | 0.178 00 | 7.087 |
1 | 魏少鑫,金鹰,王瑾,等 .电池型电容器技术发展趋势展望[J].发电技术,2022,43(5):748-759. doi:10.12096/j.2096-4528.pgt.22115 |
WEI S X, JIN Y, WANG J,et al .Prospect for development trend of battery-capacitor technology[J].Power Generation Technology,2022,43(5):748-759. doi:10.12096/j.2096-4528.pgt.22115 | |
2 | LIU K L, LI K, PENG Q,et al .A brief review on key technologies in the battery management system of electric vehicles[J].Frontiers of Mechanical Engineering,2019,14(1):47-64. doi:10.1007/s11465-018-0516-8 |
3 | CONG C B, MA H .Advances of electroactive metal-organic frameworks[J].Small,2023,19(15):2207547. doi:10.1002/smll.202207547 |
4 | LIANG J X, WANG D W .Design rationale and device configuration of lithium-ion capacitors[J].Advanced Energy Materials,2022,12(25):2200920. doi:10.1002/aenm.202200920 |
5 | 郑俊生,吕心荣,郑剑平 .锂离子电容器性能分析及其应用[J].发电技术,2022,43(5):775-783. doi:10.12096/j.2096-4528.pgt.22131 |
ZHENG J S, LÜ X R, ZHENG J P .Performance analysis and application of lithium ion capacitors[J].Power Generation Technology,2022,43(5):775-783. doi:10.12096/j.2096-4528.pgt.22131 | |
6 | 孙现众,张熊,王凯,等 .高能量密度的锂离子混合型电容器[J].电化学,2017,23(5):586-603. doi:10.13208/j.electrochem.170346 |
SUN X Z, ZHANG X, WANG K,et al .Lithium ion hybrid capacitor with high energy density[J].Journal of Electrochemistry,2017,23(5):586-603. doi:10.13208/j.electrochem.170346 | |
7 | GOSWAMI M, KUMAR S, SIDDIQUI H,et al .Hybrid energy storage devices:Li-ion and Na-ion capacitors[M]//Emerging Trends in Energy Storage Systems and Industrial Applications.Amsterdam:Elsevier,2023:223-258. doi:10.1016/b978-0-323-90521-3.00016-8 |
8 | LIU W H, WANG K, LI C,et al .Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte[J].Journal of Materials Chemistry A,2018,6(48):24979-24987. doi:10.1039/c8ta09839e |
9 | DING J, HU W, PAEK E,et al .Review of hybrid ion capacitors:from aqueous to lithium to sodium[J].Chemical Reviews,2018,118(14):6457-6498. doi:10.1021/acs.chemrev.8b00116 |
10 | LI C, ZHANG X, WANG K,et al .Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J].Journal of Energy Chemistry,2021,54:352-367. doi:10.1016/j.jechem.2020.05.058 |
11 | SOLTANI M, BEHESHTI S H .A comprehensive review of lithium ion capacitor:development,modelling,thermal management and applications[J].Journal of Energy Storage,2021,34:102019. doi:10.1016/j.est.2020.102019 |
12 | WANG H, ZHU C, CHAO D,et al .Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J].Advanced Materials,2017,29(46):1702093. doi:10.1002/adma.201702093 |
13 | MA Y F, CHANG H C, ZHANG M,et al .Graphene-based materials for lithium-ion hybrid supercapacitors[J].Advanced Materials,2015,27(36):5296-5308. doi:10.1002/adma.201501622 |
14 | SIMON P, GOGOTSI Y .Capacitive energy storage in nanostructured carbon-electrolyte systems[J].Accounts of Chemical Research,2013,46(5):1094-1103. doi:10.1021/ar200306b |
15 | AN Y B, LIU T Y, LI C,et al .A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors[J].Journal of Materials Chemistry A,2021,9(28):15654-15664. doi:10.1039/d1ta03933d |
16 | WANG B, RUAN T T, CHEN Y,et al .Graphene-based composites for electrochemical energy storage[J].Energy Storage Materials,2020,24:22-51. doi:10.1016/j.ensm.2019.08.004 |
17 | HASSAN M R AL,SEN A, ZAMAN T,et al .Emergence of graphene as a promising anode material for rechargeable batteries:a review[J].Materials Today Chemistry,2019,11:225-243. doi:10.1016/j.mtchem.2018.11.006 |
18 | YANG Z F, TIAN J R, YE Z Z,et al .High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode:Fabrication and simulation[J].Energy Storage Materials,2020,33:18-25. doi:10.1016/j.ensm.2020.07.020 |
19 | CHEN H, QIAN W Z, XIE Q,et al .Graphene-carbon nanotube hybrids as robust,rapid,reversible adsorbents for organics[J].Carbon,2017,116:409-414. doi:10.1016/j.carbon.2017.02.017 |
20 | HURILECHAOKETU, WANG J, CUI C J,et al .Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors[J].Carbon,2019,154:1-6. doi:10.1016/j.carbon.2019.07.093 |
21 | 骞伟中,崔超婕,汪剑,等 .一种高导电、高导热活性炭及制备系统、制备方法与用途:CN110510609B[P].2021-04-13. |
QIAN W Z, CUI C J, WANG J,et al .A kind of highly conductive,high thermal conductive activated carbon and its preparation system,preparation method and application:CN110510609B[P].2021-04-13. | |
22 | 闫帅帅,陆洋,侯文会,等 .面向锂电储能系统的本质安全电池智能隔膜材料[J].发电技术,2022,43(5):792-800. doi:10.12096/j.2096-4528.pgt.22098 |
YAN S S, LU Y, HOU W H,et al .Smart separator materials of intrinsic safe lithium battery for large-scale electric energy storge[J].Power Generation Technology,2022,43(5):792-800. doi:10.12096/j.2096-4528.pgt.22098 | |
23 | LIU F Y, LU P F, ZHANG Y,et al .Sustainable lignin-derived carbon as capacity-kinetics matched cathode and anode towards 4.5 V high-performance lithium-ion capacitors[J].Energy & Environmental Materials,2023,6(4):12550. doi:10.1002/eem2.12550 |
24 | WEI M M, ZHANG L, XIONG Y Q,et al .Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption[J].Microporous and Mesoporous Materials,2016,227:88-94. doi:10.1016/j.micromeso.2016.02.050 |
25 | LIU Y H, SOUCAZE-GUILLOUS B, TABERNA P L,et al .Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods[J].Journal of Power Sources,2017,366:123-130. doi:10.1016/j.jpowsour.2017.08.104 |
26 | YU Y T, CUI C J, QIAN W Z,et al .Full capacitance potential of SWCNT electrode in ionic liquids at 4 V[J].Journal of Materials Chemistry A,2014,2(46):19897-19902. doi:10.1039/c4ta04773g |
27 | TAN W, GAO T, WANG Y .Influence of surface potential on the capacitive performance of the TiO2 thin-film electrode with different crystalline forms[J].Langmuir,2020,36(14):3836-3842. doi:10.1021/acs.langmuir.0c00663 |
28 | MA C, CAO E C, DIRICAN M,et al .Fabrication,structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection[J].Applied Surface Science,2021,543:148783. doi:10.1016/j.apsusc.2020.148783 |
29 | SONG S, ZHANG X, LI C,et al .Anomalous diffusion models in frequency-domain characterization of lithium-ion capacitors[J].Journal of Power Sources,2021,490:229332. doi:10.1016/j.jpowsour.2020.229332 |
30 | BOHLEN O, KOWAL J U, SAUER D U .Ageing behaviour of electrochemical double layer capacitors[J].Journal of Power Sources,2007,172(1):468-475. doi:10.1016/j.jpowsour.2007.07.021 |
31 | MA C, WANG X, MA Y,et al .Carbon nanofiber/graphene composite paper for flexible supercapacitors with high volumetric capacitance[J].Materials Letters,2015,145:197-200. doi:10.1016/j.matlet.2015.01.106 |
[1] | 郑俊生, 吕心荣, 郑剑平. 锂离子电容器性能分析及其应用[J]. 发电技术, 2022, 43(5): 775-783. |
[2] | 李泽航, 周浩, 李浩秒, 王康丽, 蒋凯. 面向电力系统的液态金属电池储能技术[J]. 发电技术, 2022, 43(5): 760-774. |
[3] | 文贤馗,张世海,邓彤天,李盼,陈雯. 大容量电力储能调峰调频性能综述[J]. 发电技术, 2018, 39(6): 487-492. |
[4] | 李允超, 宋华伟, 马洪涛, 王宝玉, 薛福. 储能技术发展现状研究[J]. 发电技术, 2017, 38(4): 56-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||