发电技术 ›› 2022, Vol. 43 ›› Issue (5): 760-774.DOI: 10.12096/j.2096-4528.pgt.22154
李泽航1,2, 周浩2, 李浩秒1, 王康丽1, 蒋凯1
收稿日期:
2022-09-08
出版日期:
2022-10-31
发布日期:
2022-11-04
作者简介:
基金资助:
Zehang LI1,2, Hao ZHOU2, Haomiao LI1, Kangli WANG1, Kai JIANG1
Received:
2022-09-08
Published:
2022-10-31
Online:
2022-11-04
Supported by:
摘要:
电化学储能灵活高效,是大规模电力储能技术发展的重要方向。液态金属电池(liquid metal battery,LMB)采用液态金属和熔融无机盐分别作为电极和电解质,从根本上避免了传统电池的寿命限制问题,其具有长寿命、低成本、大容量的优势,在电力系统储能领域具有广阔的应用前景。主要介绍了LMB的工作原理,重点综述了其发展历程和重要研究进展,并指出了现有电池体系存在的局限性与面临的挑战,在此基础上,探讨并明确了LMB的重点发展方向。
中图分类号:
李泽航, 周浩, 李浩秒, 王康丽, 蒋凯. 面向电力系统的液态金属电池储能技术[J]. 发电技术, 2022, 43(5): 760-774.
Zehang LI, Hao ZHOU, Haomiao LI, Kangli WANG, Kai JIANG. Liquid Metal Battery Energy Storage Technology for Power System[J]. Power Generation Technology, 2022, 43(5): 760-774.
组成(组分摩尔分数比) | 熔点/℃ | 离子电导率/(S/cm) | 成本/(美元/mol) |
---|---|---|---|
LiF-LiCl (30∶70)[ | 501 | — | 5.29 |
LiF-LiCl-LiBr (22∶31∶47)[ | 430 | 3.21 | 7.83 |
LiF-LiCl-LiI (20∶30∶50)[ | 341 | 2.77 | 9.31 |
LiCl-LiI (36∶64)[ | 368 | 3.88 | 10.07 |
LiCl-KCl (58.8∶41.2)[ | 353 | 1.69 | 2.90 |
LiCl-LiBr-KBr (33∶29∶38)[ | 324 | 1.56 | 5.92 |
LiI-KI (63.3∶36.7)[ | 260 | 1.56 | 21.07 |
NaF-NaCl-NaI (15∶32∶53)[ | 530 | 1.7~2.0 | 6.41 |
LiCl-NaCl-KCl (59∶5∶36)[ | 350 | 1.307 | 2.89 |
LiCl-CaCl2-NaCl (38∶27∶35)[ | 450 | 2.18 | 1.83 |
NaCl-CaCl2 (47.9∶52.1)[ | 504 | — | 0.11 |
LiCl-CaCl2 (65∶35)[ | 485 | — | 3.09 |
NaCl-KCl-MgCl2 (30∶20∶50)[ | 396 | — | 0.11 |
表 1 LMB电解质及其性质
Tab.1 Electrolyte of LMB and its properties
组成(组分摩尔分数比) | 熔点/℃ | 离子电导率/(S/cm) | 成本/(美元/mol) |
---|---|---|---|
LiF-LiCl (30∶70)[ | 501 | — | 5.29 |
LiF-LiCl-LiBr (22∶31∶47)[ | 430 | 3.21 | 7.83 |
LiF-LiCl-LiI (20∶30∶50)[ | 341 | 2.77 | 9.31 |
LiCl-LiI (36∶64)[ | 368 | 3.88 | 10.07 |
LiCl-KCl (58.8∶41.2)[ | 353 | 1.69 | 2.90 |
LiCl-LiBr-KBr (33∶29∶38)[ | 324 | 1.56 | 5.92 |
LiI-KI (63.3∶36.7)[ | 260 | 1.56 | 21.07 |
NaF-NaCl-NaI (15∶32∶53)[ | 530 | 1.7~2.0 | 6.41 |
LiCl-NaCl-KCl (59∶5∶36)[ | 350 | 1.307 | 2.89 |
LiCl-CaCl2-NaCl (38∶27∶35)[ | 450 | 2.18 | 1.83 |
NaCl-CaCl2 (47.9∶52.1)[ | 504 | — | 0.11 |
LiCl-CaCl2 (65∶35)[ | 485 | — | 3.09 |
NaCl-KCl-MgCl2 (30∶20∶50)[ | 396 | — | 0.11 |
体系 | 放电容量/(A⋅h) | 放电能量/(W⋅h) | 材料质量/g | 能量密度/(W⋅h/kg) | 成本/[美元/(kW⋅h)] | |
---|---|---|---|---|---|---|
负极 | 正极 | |||||
Mg||Sb[ | 2.5 | 0.475 | 2.27 | 17.06 | 24.58 | 276.17 |
Li||Bi[ | 48.8 | 26.84 | 13.9 | 166.8 | 148.5 | 78.2 |
Ca-Mg||Bi[ | 0.539 | 0.280 | 0.4(Ca), 0.96(Mg) | 6 | 38 | 144.7 |
Li||Sb-Pb[ | 61.78 | 39.1 | 16 | 101.7(Sb), 260(Pb) | 103.63 | 66.64 |
Li||Sb-Sn[ | 19.7 | 15.34 | 5.18 | 30.3(Sb), 44.3(Sn) | 192.3 | 115.5 |
Li||Sb-Bi[ | 2.75 | 1.95 | 1.04 | 1.82(Sb), 4.68(Bi) | 258.62 | 63.43 |
Li||Te-Sn[ | 2 | 2.968 | 0.55 | 4.72(Te), 0.72(Sn) | 495.9 | 143.3 |
Li||Sb[ | 46.4 | 37.4 | 13 | 75.7 | 421.6 | 42.4 |
表 2 一些LMB体系的主要性能参数
Tab.2 Main performance parameters of some LMB systems
体系 | 放电容量/(A⋅h) | 放电能量/(W⋅h) | 材料质量/g | 能量密度/(W⋅h/kg) | 成本/[美元/(kW⋅h)] | |
---|---|---|---|---|---|---|
负极 | 正极 | |||||
Mg||Sb[ | 2.5 | 0.475 | 2.27 | 17.06 | 24.58 | 276.17 |
Li||Bi[ | 48.8 | 26.84 | 13.9 | 166.8 | 148.5 | 78.2 |
Ca-Mg||Bi[ | 0.539 | 0.280 | 0.4(Ca), 0.96(Mg) | 6 | 38 | 144.7 |
Li||Sb-Pb[ | 61.78 | 39.1 | 16 | 101.7(Sb), 260(Pb) | 103.63 | 66.64 |
Li||Sb-Sn[ | 19.7 | 15.34 | 5.18 | 30.3(Sb), 44.3(Sn) | 192.3 | 115.5 |
Li||Sb-Bi[ | 2.75 | 1.95 | 1.04 | 1.82(Sb), 4.68(Bi) | 258.62 | 63.43 |
Li||Te-Sn[ | 2 | 2.968 | 0.55 | 4.72(Te), 0.72(Sn) | 495.9 | 143.3 |
Li||Sb[ | 46.4 | 37.4 | 13 | 75.7 | 421.6 | 42.4 |
1 | 国家能源局 .我国可再生能源发电总装机突破11亿千瓦[EB/OL].(2022-06-24)[2022-08-23].. doi:10.18356/9789210012850c042 |
National Energy Administration .China’s total installed capacity of renewable energy power generation exceeded 1.1 billion kilowatt[EB/OL].(2022-06-24)[2022-08- 23].. doi:10.18356/9789210012850c042 | |
2 | YANG Z, ZHANG J, KINTNER-MEYER M,et al .Electrochemical energy storage for green grid[J].Chemical Reviews,2011,111(5):3577-3613. doi:10.1021/cr100290v |
3 | 王明松 .风-光-蓄-火联合发电系统的两阶段优化调度策略[J].电网与清洁能源,2020,36(5):75-82. doi:10.3969/j.issn.1674-3814.2020.05.011 |
WANG M S .Two-stage optimal dispatching strategy of the wind-solar-pumped storage-thermal combined system[J].Power System and Clean Energy,2020,36(5):75-82. doi:10.3969/j.issn.1674-3814.2020.05.011 | |
4 | 叶季蕾,李斌,张宇,等 .基于全球能源互联网典型特征的储能需求及配置分析[J].发电技术,2021,42(1):20-30. doi:10.12096/j.2096-4528.pgt.20082 |
YE J L, LI B, ZHANG Y,et al .Energy storage requirements and configuration analysis based on typical characteristics of global energy internet[J].Power Generation Technology,2021,42(1):20-30. doi:10.12096/j.2096-4528.pgt.20082 | |
5 | 寇凌峰,张颖,季宇,等 .分布式储能的典型应用场景及运营模式分析[J].电力系统保护与控制,2020,48(4):177-187. doi:10.13334/j.0258-8013.pcsee.182594 |
KOU L F, ZHANG Y, JI Y,et al .Typical application scenario and operation mode analysis of distributed energy storage[J].Power System Protection and Control,2020,48(4):177-187. doi:10.13334/j.0258-8013.pcsee.182594 | |
6 | 李建林,李雅欣,周喜超 .电网侧储能技术研究综述[J].电力建设,2020,41(6):77-84. doi:10.16628/j.cnki.2095-8188.2020.05.001 |
LI J L, LI Y X, ZHOU X C .Summary of research on grid-side energy storage technology[J].Electric Power Construction,2020,41(6):77-84. doi:10.16628/j.cnki.2095-8188.2020.05.001 | |
7 | 席星璇,熊敏鹏,袁家海 .风电场发电侧配置储能系统的经济性研究[J].智慧电力,2020,48(11):16-21. doi:10.3969/j.issn.1673-7598.2020.11.004 |
XI X X, XIONG M P, YUAN J H .Economy analysis of energy storage system in wind farm generation side[J].Smart Power,2020,48(11):16-21. doi:10.3969/j.issn.1673-7598.2020.11.004 | |
8 | 张文亮,丘明,来小康 .储能技术在电力系统中的应用[J].电网技术,2008(7):1-9. |
ZHANG W L, QIU M, LAI X K .Application of energy storage technologies in power grids[J].Power System Technology,2008(7):1-9. | |
9 | 李建林,方知进,李雅欣,等 .用于应急的移动储能系统集群协同控制综述[J].电力建设,2022,43(3):75-82. doi:10.12204/j.issn.1000-7229.2022.03.009 |
LI J L, FANG Z J, LI Y X,et al .Overview of cluster cooperative control of mobile energy storage system for emergency response[J].Electric Power Construction,2022,43(3):75-82. doi:10.12204/j.issn.1000-7229.2022.03.009 | |
10 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. doi:10.1109/mc.2017.52 |
WEN J Y, ZHOU B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,. doi:10.1109/mc.2017.52 | |
50(7):1-10. doi:10.1109/mc.2017.52 | |
11 | 许守平,李相俊,惠东 .大规模储能系统发展现状及示范应用综述[J].电网与清洁能源,2013,29(8):94-100. doi:10.3969/j.issn.1674-3814.2013.08.018 |
XU S P, LI X J, HUI D .A survey of the development and demonstration application of large-scale energy storage[J].Power System and Clean Energy,2013,. doi:10.3969/j.issn.1674-3814.2013.08.018 | |
29(8):94-100. doi:10.3969/j.issn.1674-3814.2013.08.018 | |
12 | 申洪,周勤勇,刘耀,等 .碳中和背景下全球能源互联网构建的关键技术及展望[J].发电技术,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 |
SHEN H, ZHOU Q Y, LIU Y,et al .Key technologies and prospects for the construction of global energy internet under the background of carbon neutral[J].Power Generation Technology,2021,42(1):8-19. doi:10.12096/j.2096-4528.pgt.20113 | |
13 | HOOPES W .Electrolytically-refined aluminum and articles made therefrom:US1534315A[P].1925-04-21. |
14 | YEAGER E .Fuel cells:basic considerations,in power sources division[C]//Proceedings of 12th Annual Battery Research and Development.Fort Monmouth,NJ:Army Signal Research & Development Laboratory,1958:2. |
15 | AGRUSS B, KARAS H B .The thermally regenerative liquid metal concentration cell[J].Advances in Chemistry,1967,64:62-81. doi:10.1021/ba-1967-0064.ch007 |
16 | KIM H, BOYSEN D A, NEWHOUSE J M,et al .Liquid metal batteries:past,present,and future[J].Chemical Reviews,2013,113(3):2075-2099. doi:10.1021/cr300205k |
17 | NING X, PHADKE S, CHUNG B,et al .Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J].Journal of Power Sources,2015,275:370-376. doi:10.1016/j.jpowsour.2014.10.173 |
18 | LI H, WANG K, CHENG S,et al .High performance liquid metal battery with environmental friendly antimony-tin positive electrode[J].ACS Applied Materials & Interfaces,2016:12830. doi:10.1021/acsami.6b02576 |
19 | WANG K, JIANG K, CHUNG B,et al .Lithium-antimony-lead liquid metal battery for grid-level energy storage[J].Nature,2014,514:348-350. doi:10.1038/nature13700 |
20 | KIM J, SHIN D, JUNG Y,et al .LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery[J].Journal of Power Sources,2018,377:87-92. doi:10.1016/j.jpowsour.2017.11.081 |
21 | MASSET P, HENRY A, POINSO J Y,et al .Ionic conductivity measurements of molten iodide-based electrolytes[J].Journal of Power Sources,2006,. doi:10.1016/j.jpowsour.2006.01.014 |
160(1):752-757. doi:10.1016/j.jpowsour.2006.01.014 | |
22 | XIE H L, CHEN Z Y, CHU P,et al .An elaborate low-temperature electrolyte design towards high-performance liquid metal battery[J].Journal of Power Sources,2022,536:231527. doi:10.1016/j.jpowsour.2022.231527 |
23 | YU H, LU H, HU X,et al .LiI-KI and LAGP electrolytes with a bismuth-tin positive electrode for the development of a liquid lithium battery[J].Materials Chemistry and Physics,2020,247:122865. doi:10.1016/j.matchemphys.2020.122865 |
24 | CAIRNS E, CROUTHAMEL C, FISCHER A,et al .Argonne National Lab.,Ill[R].United States:Argonne National Laboratory,1967. doi:10.2172/4543889 |
25 | ZHOU H, LI H M, GONG Q,et al .A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage[J].Energy Storage Materials,2022,50:572-579. doi:10.1016/j.ensm.2022.05.032 |
26 | KIM H, BOYSEN D A, OUCHI T,et al .Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J].Journal of Power Sources,2013,241:239-248. doi:10.1016/j.jpowsour.2013.04.052 |
27 | JANZ G J,Physical properties data compilations relevant to energy storage[M].Washington:U.S.Department of Commerce,1978. doi:10.6028/nbs.nsrds.61p1 |
28 | OUCHI T, KIM H, PATOCCO B L,et al .Calcium-based multi-element chemistry for grid-scale electrochemical energy storage[J].Nature Communications,2016,7:10999. doi:10.1038/ncomms10999 |
29 | BRADWELL D J, KIM H, SIRK A H C,et al .Magnesium-antimony liquid metal battery for stationary energy storage[J].Journal of the American Chemical Society,2012,134(4):1895-1897. doi:10.1021/ja209759s |
30 | LI H M, YIN H Y, WANG K L,et al .Liquid metal electrodes for energy storage batteries[J].Advanced Energy Materials,2016,6:1600483. doi:10.1002/aenm.201600483 |
31 | DAI T, ZHAO Y, NING X H,et al .Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J].Journal of Power Sources,2018,381:38-45. doi:10.1016/j.jpowsour.2018.01.048 |
32 | ZHAO W, LI P, LIU Z,et al .High performance antimony-bismuth-tin positive electrode for liquid metal battery[J].Chemistry of Materials,2018,30(24):8739-8746. doi:10.1021/acs.chemmater.8b01869 |
33 | CUI K, ZHAO W, LI S,et al .Low-temperature and high-energy-density Li-based liquid metal batteries based on LiCl-KCl molten salt electrolyte[J].ACS Sustainable Chemistry & Engineering,2022,10(5):1871-1879. doi:10.1021/acssuschemeng.1c07560 |
34 | YAN S, ZHOU X B, Li H M,et al .Utilizing in situ alloying reaction to achieve the self-healing,high energy density and cost-effective Li||Sb liquid metal battery[J].Journal of Power Sources,2021,514:230578. doi:10.1016/j.jpowsour.2021.230578 |
35 | ZHOU X B, ZHOU H, YAN S,et al .Increasing the actual energy density of Sb-based liquid metal battery[J].Journal of Power Sources,2022,534:231428. doi:10.1016/j.jpowsour.2022.231428 |
36 | LI H, WANG K, HAO Z,et al .Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J].Energy Storage Materials,2018,14:267-271. doi:10.1016/j.ensm.2018.04.017 |
37 | XIE H, ZHAO H, WANG J,et al .High-performance bismuth-gallium positive electrode for liquid metal battery[J].Journal of Power Sources,2020,472:228634. doi:10.1016/j.jpowsour.2020.228634 |
38 | SONGSTER J, PELTON A D .The Li-Te (lithium-tellurium) system[J].1992,13(3):300-303. doi:10.1007/bf02667559 |
39 | NEWHOUSE J M, POIZEAU S, KIM H,et al .Thermodynamic properties of calcium-magnesium alloys determined by EMF measurements[J].Electrochimica Acta,2013,91:293-301. doi:10.1016/j.electacta.2012.11.063 |
40 | XU J, KJOS O S, OSEN K S,et al .Na-Zn liquid metal battery[J].Journal of Power Sources,2016,332:274-280. doi:10.1016/j.jpowsour.2016.09.125 |
41 | GUO X, DING Y, GAO H,et al .A ternary hybrid-cation room-temperature liquid metal Battery and interfacial selection mechanism study[J].Advanced Materials,2020,32(22):2000316. doi:10.1002/adma.202000316 |
42 | DING Y, GUO X, QIAN Y,et al .Low-temperature multielement fusible alloy-based molten sodium batteries for grid-scale energy storage[J].ACS Central Science,2020,6(12):2287-8893. doi:10.1021/acscentsci.0c01035 |
43 | DING Y, GUO X, QIAN Y,et al .Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting[J].Advanced Materials,2020,32(30):2002577. doi:10.1002/adma.202002577 |
44 | SPATOCCO B L, OUCHI T, LAMBOTTE G,et al .Low-temperature molten salt electrolytes for membrane-free sodium metal batteries[J].Journal of the Electrochemical Society,2015,162(14):2729-2736. doi:10.1149/2.0441514jes |
45 | 高成炼 .锂铋液态金属电池放电过程的数值研究[D].武汉:华中科技大学,2020. doi:10.1109/icist49303.2020.9202216 |
GAO C L .Numerical study on discharge process of li||bi liquid metal battery[D].Wuhan:Huazhong University of Science and Technology,2020. doi:10.1109/icist49303.2020.9202216 | |
46 | WEBER N, GALINDO V, STEFANI F,et al .Numerical simulation of the Tayler instability in liquid metals[J].Physics,2012,15(4):43034-43052. doi:10.1088/1367-2630/15/4/043034 |
47 | KÖLLNER T, BOECK T, SCHUMACHER J .Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model[J].Physical Review E,2017,95(5):53114. doi:10.1103/physreve.95.053114 |
48 | 王晟,闫帅,李浩秒,等 .基于正则化方法的电池阻抗谱弛豫时间分布解析[J].中国电机工程学报,2022,42(9):3177-3188. |
WANG S, YAN S, LI H M,et al .Distribution of relaxation times analysis from battery impedance spectroscopy using regularization method[J].Proceedings of the CSEE,2022,42(9):3177-3188. | |
49 | 林靖,王晟,李浩秒,等 .液态金属电池的温度特性[J].中国电机工程学报,2021,41(4):1458-1468. |
LIN J, WANG S, LI H M,et al .Temperature characteristics of liquid metal batteries[J].Proceedings of the CSEE,2021,41(4):1458-1468. | |
50 | SHI Q, GUO Z, WANG S,et al .Physics-based fractional-order model and parameters identification of liquid metal battery[J].Electrochimica Acta,2022,428:140916. doi:10.1016/j.electacta.2022.140916 |
51 | GUO Z, XU C, LI W,et al .Numerical study on the thermal management system of a liquid metal battery module[J].Journal of Power Sources,2018,392,181-192. doi:10.1016/j.jpowsour.2018.04.094 |
52 | LIU G, XU C, LI H,et al .State of charge and online model parameters co-estimation for liquid metal batteries[J].Applied Energy,2019,250:677-684. doi:10.1016/j.apenergy.2019.05.032 |
53 | XU C, ZHANG E, YAN S,et al .State of charge estimation for liquid metal battery based on an improved sliding mode observer[J].Journal of Energy Storage,2022,45:103701. doi:10.1016/j.est.2021.103701 |
54 | SUN X, SONG Z, XU T .Design of two-stage active equalization system for liquid metal battery module[C]//Conference on Power and Renewable Energy.Shanghai:IEEE,2021:961-966. doi:10.1109/icpre52634.2021.9635297 |
55 | 张娥,徐成,王晟,等 .基于模糊逻辑控制器的液态金属电池组两级均衡系统[J].中国电机工程学报,2020,40(12):4024-4033. |
ZHANG E, XU C, WANG S,et al .Two-stage equalizing system of liquid metal batteries based on fuzzy logic controller[J].Proceedings of the CSEE,2020,40(12):4024-4033. | |
56 | CAI M, ZHANG E, LIN J,et al .Route optimization battery equalization for series connected liquid metal battery strings[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC).Wuhan:IEEE,2021:1-5. doi:10.1109/cieec50170.2021.9510593 |
[1] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[2] | 王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198. |
[3] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[4] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[5] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[6] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[7] | 潘晓杰, 徐友平, 解治军, 王玉坤, 张慕婕, 石梦璇, 马坤, 胡伟. 堆栈式集成学习驱动的电力系统暂态稳定预防控制优化方法[J]. 发电技术, 2023, 44(6): 865-874. |
[8] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[9] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[10] | 吴灏, 许晓, 彭紫楠, 郭宁辉, 王淇锋. 基于电网云数据管理的电气设备大数据移动实验室及其应用研究[J]. 发电技术, 2023, 44(3): 417-424. |
[11] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[12] | 肖洋, 李志强, 程林, 汤磊, 夏潮, 梁英, 宋锐, 王东阳, 李贺文. 西北电网集中式调相机AVC综合协调控制策略[J]. 发电技术, 2023, 44(2): 270-279. |
[13] | 印欣, 张锋, 阿地利·巴拉提, 常喜强, 陈武晖, 李长军, 李雪明, 袁少伟. 新型电力系统背景下电热负荷参与实时调度研究[J]. 发电技术, 2023, 44(1): 115-124. |
[14] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
[15] | 高骞, 杨俊义, 洪宇, 孙小磊, 朱前进, 俞天, 王鑫, 王琳媛, 李泽森. 新型电力系统背景下电网发展业务数字化转型架构及路径研究[J]. 发电技术, 2022, 43(6): 851-859. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||