发电技术 ›› 2023, Vol. 44 ›› Issue (4): 443-451.DOI: 10.12096/j.2096-4528.pgt.22187
孔令国1, 宫健1, 杨士慧2, 倪德富3, 王士博1, 刘闯1
收稿日期:
2023-01-03
出版日期:
2023-08-31
发布日期:
2023-08-29
作者简介:
基金资助:
Lingguo KONG1, Jian GONG1, Shihui YANG2, Defu NI3, Shibo WANG1, Chuang LIU1
Received:
2023-01-03
Published:
2023-08-31
Online:
2023-08-29
Supported by:
摘要:
随着国家“双碳”目标的推进,电解水制氢将迎来爆发式增长,其中电源的拓扑及控制对提升制氢系统效率具有重要意义。对DC/DC隔离型制氢电源的拓扑进行梳理及分析,针对不同的应用场景,分别从单级型、两级型、并联型和多端口型DC/DC隔离型制氢电源的结构及其优缺点进行分析,结果表明,全桥谐振变换器及考虑电解槽温度、压力及氢/氧交叉渗透反馈的控制方案,将成为适应宽范围、强波动的大功率规模化制氢电源发展趋势,且隔离型三端口DC/DC变换电源将成为分布式集成化电-氢耦合未来发展模式,为电解水制氢电源进一步研究提供参考。
中图分类号:
孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451.
Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply[J]. Power Generation Technology, 2023, 44(4): 443-451.
1 | 杨希特 .中国发展氢能社会的构想[J].智库理论与实践,2022,7(5):159-165. |
YANG X T .The idea of developing a hydrogen society in China[J].Think Tank:Theory&Practice,2022,7(5):159-165. | |
2 | 刘尚泽,于青,管健 .氢能利用与产业发展现状及展望[J].能源与节能,2022(11):18-21. doi:10.3969/j.issn.2095-0802.2022.11.004 |
LIU S Z, YU Q, GUAN J .Current situation and prospects of hydrogen energy utilization and industrial development[J].Energy and Energy Conservation,2022(11):18-21. doi:10.3969/j.issn.2095-0802.2022.11.004 | |
3 | 李建林,李光辉,郭丽军,等 .“十四五”规划下氢能应用技术现状综述及前景展望[J].电气应用,2021,40(6):10-16. |
LI J L, LI G H, GUO L J,et al .Overview and prospect of hydrogen energy application technology under the 14th Five Year Plan[J].Electrotechnical Application,2021,40(6):10-16. | |
4 | 赵剑波,王蕾 .“十四五”构建以新能源为主体的新型电力系统[J].中国能源,2021,43(5):17-21. doi:10.3969/j.issn.1003-2355.2021.05.003 |
ZHAO J B, WANG L .The “14th Five-Year Plan” build on new energy sources as the main body of the new power system[J].Enery of China,2021,43(5):17-21. doi:10.3969/j.issn.1003-2355.2021.05.003 | |
5 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under “double carbon” circumstance[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
6 | 许传博,刘建国 .氢储能在我国新型电力系统中的应用价值、挑战及展望[J].中国工程科学,2022,24(3):89-99. doi:10.15302/j-sscae-2022.03.010 |
XU C B, LIU J G .Hydrogen energy storage in China's new-type power system:application value,challenges,and prospects[J].Strategic Study of CAE,2022,24(3):89-99. doi:10.15302/j-sscae-2022.03.010 | |
7 | PAN G, GU W, LU Y,et al .Optimal planning for electricity-hydrogen integrated energy system considering power to hydrogen and heat and seasonal storage[J].IEEE Transactions on Sustainable Energy,2020,11(4):2662-2676. doi:10.1109/tste.2020.2970078 |
8 | 刘坚,钟财富 .我国氢能发展现状与前景展望[J].中国能源,2019,41(2):32-36. doi:10.3969/j.issn.1003-2355.2019.02.007 |
LIU J, ZHONG C F .The development status and prospect of hydrogen energy[J].Energy of China,2019,41(2):32-36. doi:10.3969/j.issn.1003-2355.2019.02.007 | |
9 | NIE J, CHEN Y, BOEHM R F,et al .A photoelectrochemical model of proton exchange water electrolysis for hydrogen production[J].Journal of Heat Transfer,2008,130(4):156-161. doi:10.1115/1.2789722 |
10 | 李雪临,袁凌 .海上风电制氢技术发展现状与建议[J].发电技术,2022,43(2):198-206. doi:10.12096/j.2096-4528.pgt.22032 |
LI X L, YUAN L .Development status and suggestions of hydrogen production technology by offshore wind power[J].Power Generation Technology,2022,43(2):198-206. doi:10.12096/j.2096-4528.pgt.22032 | |
11 | KUMAR S S, HIMABINDU V .Hydrogen production by PEM water electrolysis-A review[J].Materials Science for Energy Technologies,2019,2(3):442-454. doi:10.1016/j.mset.2019.03.002 |
12 | 许卫,李桂真,马长山 .大规模电解水制氢系统的发展现状[J].太阳能,2022(5):33-39. |
XU W, LI G Z, MA C S .Development status of large-scale water electrolysis system for hydrogen production[J].Solar Energy,2022(5):33-39. | |
13 | CARMO M, FRITZ D L, MERGEL J,et al. A comprehensive review on PEM water electrolysis[J].International Journal of Hydrogen Energy,2013,38(12):4901-4934. doi:10.1016/j.ijhydene.2013.01.151 |
14 | FALCAO D S, PINTO A .A review on PEM electrolyzer modelling:guidelines for beginners[J].Journal of Cleaner Production,2020,261:121184. doi:10.1016/j.jclepro.2020.121184 |
15 | 俞红梅,邵志刚,侯明,等 .电解水制氢技术研究进展与发展建议[J].中国工程科学,2021,23(2):146-152. doi:10.15302/j-sscae-2021.02.020 |
YU H M, SHAO Z G, HOU M,et al .Hydrogen production by water electrolysis:progress and suggestions[J].Strategic Study of CAE,2021,23(2):146-152. doi:10.15302/j-sscae-2021.02.020 | |
16 | 闫娜,李宝昕,贾宏刚,等 .关于氢综合利用系统在西安地区宾馆类场景中的配置方法研究[J].电网与清洁能源,2021,37(11):87-93. doi:10.3969/j.issn.1674-3814.2021.11.012 |
YAN N, LI B X, JIA H G,et al .A study on the configuration of hydrogen comprehensive utilization system for the hotel-type scenario in Xi’an[J].Advances of Power System & Hydroelectric Engineering,2021,37(11):87-93. doi:10.3969/j.issn.1674-3814.2021.11.012 | |
17 | 卢一菲,陈冲,梁立中 .基于电-氢混合储能的风氢耦合系统建模与控制[J].智慧电力,2020,48(3):7-14. |
LU Y F, CHEN C, LIANG L Z .Modeling and control of wind-hydrogen coupling system based on electricity-hydrogen hybrid energy storage[J].Smart Power,2020,48(3):7-14. | |
18 | 侯慧,戈翔迪,吴细秀,等 .运行与规划协同的电热氢联供系统最优容量配置研究[J].电力系统保护与控制,2022,50(24):144-151. |
HOU H, GE X D, WU X X,et al .Optimal capacity allocation of an electricity heat hydrogen cogeneration system based on coordinated operation and planning[J].Power System Protection and Control,2022,50(24):144-151. | |
19 | KOPONEN J, RUUSKANEN V, KOSONEN A,et al .Effect of converter topology on the specific energy consumption of alkaline water electrolyzers[J].IEEE Transactions on Power Electronics,2018,34(7):6171-6182. doi:10.1109/tpel.2018.2876636 |
20 | RUUSKANEN V, KOPONEN J, KOSONEN A,et al .Power quality and reactive power of water electrolyzers supplied with thyristor converters[J].Journal of Power Sources,2020,459:228075. doi:10.1016/j.jpowsour.2020.228075 |
21 | 徐立军,王维庆,段友莲,等 .用DC/DC变换器进行光伏直接耦合制氢的优化方法[J].电源技术,2018,42(11):1668-1671. doi:10.3969/j.issn.1002-087X.2018.11.025 |
XU L J, WANG W Q, DUAN Y L,et al .Optimized method of photovoltaic generator-water electrolyser direct coupling through DC/DC converter[J].Chinese Journal of Power Sources,2018,42(11):1668-1671. doi:10.3969/j.issn.1002-087X.2018.11.025 | |
22 | LI N, ZHAO X, SHI X,et al .Integrated energy systems with CCHP and hydrogen supply:a new outlet for curtailed wind power[J].Applied Energy,2021,303:117619. doi:10.1016/j.apenergy.2021.117619 |
23 | TAKAHASHI R, KINOSHITA H, MURATA T,et al.Output power smoothing and hydrogen production by using variable speed wind generators[J].IEEE Transactions on Industrial Electronics,2009,57(2):485-493. doi:10.1109/tie.2009.2032437 |
24 | 蔡国伟,孔令国,薛宇,等 .风氢耦合发电技术研究综述[J].电力系统自动化,2014,38(21):127-135. doi:10.7500/AEPS20131231004 |
CAI G W, KONG L G, XUE Y,et al .Review of wind-hydrogen coupled power generation technology[J].Automation of Electric Power Systems,2014,38(21):127-135. doi:10.7500/AEPS20131231004 | |
25 | 郭小强,魏玉鹏,万燕鸣,等 .新能源制氢电力电子变换器综述[J].电力系统自动化,2021,45(20):185-199. doi:10.7500/AEPS20201101004 |
GUO X Q, WEI Y P, WAN Y M,et al .Review of new energy hydrogen generation power electronic converter[J].Automation of Electric Power Systems,2021,45(20):185-199. doi:10.7500/AEPS20201101004 | |
26 | BLINOV A, ANDRIJANOVITS A .New DC/DC converter for electrolyser interfacing with stand-alone renewable energy system[J].Electrical,Control and Communication Engineering,2013,1(1):24-29. doi:10.2478/v10314-012-0004-1 |
27 | VITALE G, CASTALDI F, GUILBERT D .Design of a LLC resonant converter for powering a PEM electrolyzer[J].Renewable Energy and Power Quality Journal,2021,19:452-458. doi:10.24084/repqj19.317 |
28 | CAVALLARO C, CHIMENTO F, MUSUMECI S,et al .Electrolyser in H2 self-producing systems connected to DC link with dedicated phase shift converter[C]//2007 International Conference on Clean Electrical Power.IEEE,2007:632-638. doi:10.1109/iccep.2007.384293 |
29 | 范泽锐 .基于PEM电解槽LLC隔离型DC/DC谐振变换器设计研究[D].北京:北方工业大学,2022. |
FAN Z R .Design and research of LLC isolated DC/DC resonant converter based on PEM electrolyzer[D].Beijing:North China University of Technology,2022. | |
30 | CHANDRASEKHAR P, REDDY S R .Design of LCL resonant converter for electrolyser[J].Annals of Dunarea De Jos,2010,33(1):278-291. |
31 | ANDRIJANOVITS A, VINNIKOV D, ROASTO I,et al .Three-level half-bridge ZVS DC/DC converter for electrolyzer integration with renewable energy systems[C]//2011 10th International Conference on Environment and Electrical Engineering.IEEE,2011:1-4. doi:10.1109/eeeic.2011.5874703 |
32 | GARRIGOS A, BLANES J M, CARRASCO J A,et al .5 kW DC/DC converter for hydrogen generation from photovoltaic sources[J].International Journal of Hydrogen Energy,2010,35(12):6123-6130. doi:10.1016/j.ijhydene.2010.03.131 |
33 | 钱尼信 .光伏制氢系统大功率降压型DC/DC变换器研究[D].合肥:合肥工业大学,2021. doi:10.1002/9781119454489.ch2 |
QIAN N X .Research on high power buck DC/DC converter for photovoltaic-hydrogen production system[D].Hefei:Hefei University of Technology,2021. doi:10.1002/9781119454489.ch2 | |
34 | CONCHA D, RENAUDINEAU H, HERNANDEZ M S,et al .Evaluation of DCX converters for off-grid photovoltaic-based green hydrogen production[J].International Journal of Hydrogen Energy,2021,46(38):19861-19870. doi:10.1016/j.ijhydene.2021.03.129 |
35 | GAUTAM D S, BHAT A K S .A comparison of soft-switched DC-to-DC converters for electrolyzer application[J].IEEE Transactions on Power Electronics,2012,28(1):54-63. doi:10.1109/tpel.2012.2195682 |
36 | 周京华,孟祥飞,陈亚爱,等 .基于新能源发电的电解水制氢直流电源研究[J].太阳能学报,2022,43(6):389-397. |
ZHOU J H, MENG X F, CHEN Y A,et al .Research on DC power supply for hydrogen production from electrolytic water based on new energy generation[J].Solar Energy,2022,43(6):389-397. | |
37 | 孙孝峰,张绘欣,张涵,等 .一种用于电-氢多能互补型微电网的双有源桥集成Boost拓扑及其控制[J].电工技术学报,2021,36(10):2092-2104. doi:10.19595/j.cnki.1000-6753.tces.190960 |
ZHANG X F, ZHANG H X, ZHANG H,et al .Topology and control strategy of dual active bridge integrated boost circuit for electro-hydrogen multi-energy complementary microgrid[J].Transactions of China Electrotechnical Society,2021,36(10):2092-2104. doi:10.19595/j.cnki.1000-6753.tces.190960 | |
38 | VINNIKOV D, ANDRIJANOVITS A, ROASTO I,et al .Experimental study of new integrated DC/DC converter for hydrogen-based energy storage[C]//2011 10th International Conference on Environment and Electrical Engineering.IEEE,2011:1-4. doi:10.1109/eeeic.2011.5874667 |
39 | ANDRIJANOVITS A, BLINOV A, HUSEV O,et al .Multiport converter with integrated energy storage for hydrogen buffer interfacing with renewable energy systems[C]//2012 IEEE International Conference on Industrial Technology.IEEE,2012:230-235. doi:10.1109/icit.2012.6209943 |
40 | NGUYEN B L H, PANWAR M, HOVSAPIAN R,et al .Power converter topologies for electrolyzer applications to enable electric grid services[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society.IEEE,2021:1-6. doi:10.1109/iecon48115.2021.9589044 |
41 | 杨旭 .光储发电系统三端口DC/DC变换器硬解耦与控制方法研究[D].哈尔滨:哈尔滨工业大学,2016. |
YANG X .Research on hardware-decoupling and control method of three-port DC/DC converter for PV-storage generation system[D].Harbin:Harbin Institute of Technology,2016. | |
42 | TAO H, DUARTE J L, HENDRIX M A M .Multiport converters for hybrid power sources[C]//2008 IEEE Power Electronics Specialists Conference.IEEE,2008:3412-3418. doi:10.1109/pesc.2008.4592483 |
43 | HUANG X, WANG Z, KONG Z,et al .Modular multilevel converter with three-port power channels for medium-voltage drives[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2017,6(3):1495-1507. doi:10.1109/jestpe.2017.2770162 |
44 | PHATTANASAK M, GAVAGSAZ-GHOACHANI R, MARTIN J P,et al .Control of a hybrid energy source comprising a fuel cell and two storage devices using isolated three-port bidirectional DC-DC converters[J].IEEE transactions on Industry applications,2015,1(1):491-497. doi:10.1109/tia.2014.2336975 |
45 | FALCONES S, AYYANAR R, MAO X .A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage[J].IEEE Transactions on Power Electronics,2012,28(5):2192-2203. doi:10.1109/tpel.2012.2215965 |
[1] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[2] | 宋天琦, 马韵婷, 张智慧. 光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析[J]. 发电技术, 2023, 44(4): 465-472. |
[3] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[4] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[5] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[6] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[7] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[8] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[9] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[10] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[11] | 朱凯, 张艳红. “双碳”形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72. |
[12] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
[13] | 吴明哲,陈武晖. VSC-HVDC稳定控制研究[J]. 发电技术, 2019, 40(1): 28-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||