发电技术 ›› 2023, Vol. 44 ›› Issue (3): 350-360.DOI: 10.12096/j.2096-4528.pgt.22078

• 绿氢制备-存储-多场景应用关键技术 • 上一篇    下一篇

百千瓦级天然气制氢质子交换膜燃料电池热电联产系统稳态特性模拟分析

吴磊1,2, 彭黎菊3, 李爽1,2, 史翊翔1,2, 蔡宁生1,2   

  1. 1.热科学与动力工程教育部重点实验室(清华大学能源与动力工程系),北京市 海淀区 100084
    2.清华大学山西清洁能源研究院,山西省 太原市 030032
    3.北京建筑大学环境与能源工程学院,北京市 大兴区 102627
  • 收稿日期:2022-12-03 出版日期:2023-06-30 发布日期:2023-06-30
  • 通讯作者: 李爽
  • 作者简介:吴磊(1996),男,硕士研究生,主要从事燃料电池热电联产系统模拟工作,wul20@mails.tsinghua.edu.cn
    彭黎菊(1997),女,硕士研究生,主要从事重整制氢燃料电池系统模拟工作,2108140421018@stu.bucea.edu.cn
    李爽(1989),男,博士,助理研究员,主要研究方向为氢能利用、气体净化等,本文通信作者,shuangli@tsinghua.edu.cn
    史翊翔(1982),男,博士,教授,主要研究方向为洁净煤发电技术、氢能与燃料电池,shyx@tsinghua.edu.cn
    蔡宁生(1956),男,博士,教授,主要研究方向为洁净煤发电技术、氢能与燃料电池,cains@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(52176190);清华大学山西清洁能源研究院科研团队经费(sxky1903)

Simulation and Analysis of Steady State Characteristics of Hundred Kilowatt Proton Exchange Membrane Fuel Cell Combined Heat and Power System Based on Hydrogen Production From Natural Gas

Lei WU1,2, Liju PENG3, Shuang LI1,2, Yixiang SHI1,2, Ningsheng CAI1,2   

  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education (Department of Energy and Power Engineering, Tsinghua University), Haidian District, Beijing 100084, China
    2.Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, Shanxi Province, China
    3.School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Daxing District, Beijing 102627, China
  • Received:2022-12-03 Published:2023-06-30 Online:2023-06-30
  • Contact: Shuang LI
  • Supported by:
    National Natural Science Foundation of China(52176190);Support Funds from Shanxi Research Institute for Clean Energy, Tsinghua University for Research Teams(sxky1903)

摘要:

依托Aspen Plus平台建立了百千瓦级质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)热电联产系统模型,该模型由燃料处理单元、热回收单元与PEMFC单元构成。燃料处理单元关键设备模型依据反应动力学参数搭建,PEMFC电堆采用Aspen Custom Modeler自定义模型。验证了关键设备模型的准确性,并分析了稳态条件下设备运行参数对系统性能的影响,结果表明:在以电定热运行模式下,可适当减少燃烧天然气进料或者降低重整原料水碳比,以提高系统的电效率与?效率。此外,可调节变压吸附(pressure swing adsorption,PSA)至PEMFC管路阀门,增大电堆阳极进气压力以提高发电量,但不建议增大电堆阴极进气压力,这会导致系统辅助设备耗电量上升、净电效率下降。以热定电时,可采取相反的调节方式,降低燃烧烟气与PEMFC尾气的排放温度,提高系统热效率。研究结果可为调整PEMFC热电联产系统工作参数以实现热电输出合理配比提供参考。

关键词: 天然气蒸气重整制氢, 质子交换膜燃料电池(PEMFC), 热电联产, 稳态特性

Abstract:

A model of hundred kilowatt proton exchange membrane fuel cell (PEMFC) combined heat and power system was established in Aspen Plus platform, which was composed of fuel processing unit, heat recovery unit and PEMFC unit. The key equipment model of fuel processing unit was built according to the reaction kinetic parameters, while PEMFC stack adopted the custom model from Aspen Custom Modeler. This paper verified the accuracy of key equipment model and analyzed the effects of operating parameters on system performances under steady-state conditions. The results show that under the operation mode of determining heat by power, the feed of combustion natural gas or the steam-carbon ratio of reforming gas can be appropriately reduced to improve electrical efficiency and exergy efficiency of the system. In addition, the linkage valve on the pipeline from pressure swing adsorption (PSA) to PEMFC can be adjusted to increase the anode inlet pressure of the stack, so as to improve the power generation. However, it is not recommended to increase the cathode inlet pressure of the stack, which will lead to raise of auxiliary equipment power consumption and decline in net power efficiency. When the power is determined by heat, the opposite adjustment method can be adopted, and the exhaust temperature of combustion flue gas and PEMFC tail gas can be reduced to improve the system thermal efficiency. The study results provide reference for adjusting the operation parameters of PEMFC combined heat and power system to achieve appropriate thermo-electric output ratio.

Key words: hydrogen production by nature gas steam reforming, proton exchange membrane fuel cell (PEMFC), combined heat and power, steady state characteristics

中图分类号: