Power Generation Technology ›› 2024, Vol. 45 ›› Issue (6): 1146-1152.DOI: 10.12096/j.2096-4528.pgt.23175
• New Energy • Previous Articles
Zhan LIU1, Jianxun LIU2, Yanyang BAO2, Dazi LI2
Received:
2023-12-15
Revised:
2024-03-02
Published:
2024-12-31
Online:
2024-12-30
Contact:
Dazi LI
Supported by:
CLC Number:
Zhan LIU, Jianxun LIU, Yanyang BAO, Dazi LI. Bearing Faults Diagnosis Method Based on Stacked Auto-Encoder With Graph Regularization for Wind Turbines[J]. Power Generation Technology, 2024, 45(6): 1146-1152.
小波函数 | MSE | SNR | PSNR |
---|---|---|---|
Coiflet | 15.463 2 | 11.944 8 | 12.513 6 |
Meyer | 16.485 9 | 11.666 7 | 12.235 4 |
Daubechies | 17.040 3 | 11.523 0 | 12.091 7 |
Symlet | 17.018 2 | 11.528 7 | 12.097 4 |
Tab. 1 Performance comparison of different wavelet functions
小波函数 | MSE | SNR | PSNR |
---|---|---|---|
Coiflet | 15.463 2 | 11.944 8 | 12.513 6 |
Meyer | 16.485 9 | 11.666 7 | 12.235 4 |
Daubechies | 17.040 3 | 11.523 0 | 12.091 7 |
Symlet | 17.018 2 | 11.528 7 | 12.097 4 |
测点位置 | 图正则化自编码器 | 传统时频域特征提取 |
---|---|---|
主轴轴承 | 0.976 | 0.908 |
齿轮箱轴承 | 0.933 | 0.879 |
发电机轴承 | 0.949 | 0.913 |
Tab. 3 Cassification accuracy of bearing wear fault types using different feature extraction methods
测点位置 | 图正则化自编码器 | 传统时频域特征提取 |
---|---|---|
主轴轴承 | 0.976 | 0.908 |
齿轮箱轴承 | 0.933 | 0.879 |
发电机轴承 | 0.949 | 0.913 |
测点位置 | 图正则化自编码器 | 传统时频域特征提取 |
---|---|---|
主轴轴承 | 0.953 | 0.900 |
齿轮箱轴承 | 0.978 | 0.853 |
发电机轴承 | 0.992 | 0.950 |
Tab. 4 Classification accuracy of inner and outer ring damage fault types using different feature extraction methods
测点位置 | 图正则化自编码器 | 传统时频域特征提取 |
---|---|---|
主轴轴承 | 0.953 | 0.900 |
齿轮箱轴承 | 0.978 | 0.853 |
发电机轴承 | 0.992 | 0.950 |
1 | BADAL F R,DAS P, SARKER S K,et al .A survey on control issues in renewable energy integration and microgrid[J].Protection and Control of Modern Power Systems,2019,4(1):8-14. doi:10.1186/s41601-019-0122-8 |
2 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
3 | SPINATO F, TAVNER P J, VAN BUSSEL G J W,et al .Reliability of wind turbine subassemblies[J].IET Renewable Power Generation,2009,3(4):387-395. doi:10.1049/iet-rpg.2008.0060 |
4 | 李俊卿,马亚鹏,胡晓东,等 .基于CBAM-InceptionV2-双流CNN的风电机组轴承故障诊断[J].智慧电力,2023,51(6):28-33. |
LI J Q, MA Y P, HU X D,et al .Wind turbine bearing fault diagnosis based on CBAM-InceptionV2-two-stream CNN[J].Smart Power,2023,51(6):28-33. | |
5 | 田德,陶立壮 .计及齿轮分度圆误差的风电齿轮箱振动特性分析[J].可再生能源,2023,41(4):480-486. |
TIAN D, TAO L Z .Vibration characteristics research of wind turbine gearbox considering flank pitch error[J].Renewable Energy Resources,2023,41(4):480-486. | |
6 | 刘展,包琰洋,李大字 .基于重采样降噪与主成分分析的宽卷积深度神经网络风机故障诊断方法[J].发电技术,2023,44(6):824-832. |
LIU Z, BAO Y Y, LI D Z .Fault diagnosis method of wind turbines based on wide deep convolutional neural network with resampling and principal component analysis[J].Power Generation Technology,2023,44(6):824-832. | |
7 | 陈阳,刘永前,韩爽,等 .基于多模态时频图融合的风电机组齿轮箱故障诊断方法[J].分布式能源,2023,8(3):17-23. |
CHEN Y, LIU Y Q, HAN S,et al .Fault diagnosis method of wind turbine gearbox based on multi-mode time-frequency image fusion[J].Distributed Energy,2023,8(3):17-23. | |
8 | LIU Z, ZHANG L .A review of failure modes,condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J].Measurement,2020,149:107002. doi:10.1016/j.measurement.2019.107002 |
9 | LIU B, LIU B X, DAI Q B .A review of bearing fault diagnosis for wind turbines[J].IOP Conference Series:Earth and Environmental Science,2021,675(1):012094. doi:10.1088/1755-1315/675/1/012094 |
10 | 金晓航,孙毅,单继宏,等 .风力发电机组故障诊断与预测技术研究综述[J].仪器仪表学报,2017,38(5):1041-1053. |
JIN X H, SUN Y, SHAN J H,et al .Fault diagnosis and prognosis for wind turbines:an overview[J]. Chinese Journal of Scientific Instrument,2017,38(5):1041-1053. | |
11 | JIN T, YAN C, CHEN C,et al .Light neural network with fewer parameters based on CNN for fault diagnosis of rotating machinery[J].Measurement,2021,181:109639. doi:10.1016/j.measurement.2021.109639 |
12 | WANG X, QIN Y, WANG Y,et al .ReLTanh:an activation function with vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery fault diagnosis[J].Neurocomputing,2019,363:88-98. doi:10.1016/j.neucom.2019.07.017 |
13 | PANG Y, JIA L, ZHANG X,et al .Design and implementation of automatic fault diagnosis system for wind turbine[J].Computers & Electrical Engineering,2020,87:106754. doi:10.1016/j.compeleceng.2020.106754 |
14 | LIU J Q, PAN C L, LEI F,et al .Fault prediction of bearings based on LSTM and statistical process analysis[J].Reliability Engineering & System Safety,2021,214:107646. doi:10.1016/j.ress.2021.107646 |
15 | SHAH A K, YADAV A, MALIK H .EMD and ANN based intelligent model for bearing fault diagnosis[J].Journal of Intelligent & Fuzzy Systems,2018,35(5):5391-5402. doi:10.3233/jifs-169821 |
16 | ZHAO Y, ZHOU M, WANG L,et al .Bearing fault diagnosis with cascaded space projection and a CNN[J].Control Theory and Technology,2022,20(1):103-113. doi:10.1007/s11768-022-00084-0 |
17 | WANG M, WANG W, ZHANG X,et al .A new fault diagnosis of rolling bearing based on Markov transition field and CNN[J].Entropy,2022,24(6):751. doi:10.3390/e24060751 |
18 | 丁雪,邓艾东,李晶,等 .基于多尺度和注意力机制的滚动轴承故障诊断[J].东南大学学报(自然科学版),2022,52(1):172-178. |
DING X, DENG A D, LI J,et al .Fault diagnosis of rolling bearing based on multi-scale and attention mechanism[J].Journal of Southeast University (Natural Science Edition),2022,52(1):172-178. | |
19 | KE Y, YAO C, SONG E,et al .Intelligent fault diagnosis method of common rail injector based on composite hierarchical dispersion entropy and improved least squares support vector machine[J].Digital Signal Processing,2021,114:103054. doi:10.1016/j.dsp.2021.103054 |
20 | POTHISARN C, KLOMJIT J, NGAOPITAKKUL A .Comparison of various mother wavelets for fault classification in electrical systems[J].Applied Sciences,2020,10(4):1203-1210. doi:10.3390/app10041203 |
21 | LEI Y, HE Z, ZI Y,et al .Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs[J].Mechanical Systems and Signal Processing,2007,21(5):2280-2294. doi:10.1016/j.ymssp.2006.11.003 |
22 | 李树钰 .改进的小波阈值去噪方法及其在MATLAB中的仿真[J].噪声与振动控制,2010,30(2):121-124. |
LI S Y .Improved wavelet threshold denoising method and its simulation using MATALB[J].Noise and Vibration Control,2010,30(2):121-124. |
[1] | Beilei REN, Kunli GUO, Weizheng CAI, Bohao LI, Tinghua ZHU, Lingtao LI. Subsynchronous Oscillation Suppression of Direct-Drive Wind Turbines Based on Improved Linear Active Disturbance Rejection Control and Analysis of Impedance Stability [J]. Power Generation Technology, 2024, 45(6): 1135-1145. |
[2] | Yaohan WANG, Yangfan ZHANG, Qingxu ZHAO, Xiaodong WANG, Kai LIANG, Yu WANG. Joint Simulation Study on Load Characteristics of Wind Turbines in Low Voltage Ride Through Process [J]. Power Generation Technology, 2024, 45(4): 705-715. |
[3] | Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System [J]. Power Generation Technology, 2024, 45(2): 189-198. |
[4] | Ang FAN, Luping LI, Rui LIU, Minnan OUYANG, Shangnian CHEN. Research on Dynamic Characteristics of Monopile Offshore Wind Turbine Tower Under Different Wind Speed Conditions [J]. Power Generation Technology, 2024, 45(2): 312-322. |
[5] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[6] | Zhipeng QIN, Gaosheng WEI, Liu CUI, Xiaoze DU. Study on Aerodynamic Performance of Wind Turbine Airfoil With Combined S-Slot and Trailing Edge Flap Control [J]. Power Generation Technology, 2024, 45(1): 24-31. |
[7] | Daijun CHEN, Lili CHEN, Yangtao LI. Electrical Power Output Prediction of Combined Cycle Power Station [J]. Power Generation Technology, 2024, 45(1): 99-105. |
[8] | Zhan LIU, Yanyang BAO, Dazi LI. Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis [J]. Power Generation Technology, 2023, 44(6): 824-832. |
[9] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[10] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[11] | Hang ZHANG, Chuanjie ZHOU, Lin ZHANG, Jietao CHEN, Chunmei XU, Daogang PENG. Fault Diagnosis of Power Plant Induced Draft Fan Based on PNN-WNN-DS Information Fusion [J]. Power Generation Technology, 2022, 43(6): 951-958. |
[12] | Ang FAN, Luping LI, Shihai ZHANG, Minnan OUYANG, Xiankui WEN, Shangnian CHEN. A Review on Dynamic Characteristics and Life Loss of Large Wind Turbine Towers [J]. Power Generation Technology, 2022, 43(3): 421-430. |
[13] | Zheng LI, Xiaojiang GUO, Xuhui SHEN, Haiyan TANG. Summary of Technologies for the Development of Offshore Wind Power Industry in China [J]. Power Generation Technology, 2022, 43(2): 186-197. |
[14] | Danmei HU, Li ZENG, Yunhao CHEN. Analysis of Fluid-Structure Coupling Characteristics of Semi-submersible Offshore Wind Turbines [J]. Power Generation Technology, 2022, 43(2): 218-226. |
[15] | Xiaoyang ZOU, Weiguo PAN. Research Progress on Dynamic Simulation Analysis of Floating Offshore Wind Turbine [J]. Power Generation Technology, 2022, 43(2): 249-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||