Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 465-472.DOI: 10.12096/j.2096-4528.pgt.22181
• Key Technologies of Green Hydrogen Preparation, Storage and Multi-scenario Application • Previous Articles Next Articles
Tianqi SONG, Yunting MA, Zhihui ZHANG
Received:
2023-02-21
Published:
2023-08-31
Online:
2023-08-29
CLC Number:
Tianqi SONG, Yunting MA, Zhihui ZHANG. Operation Mode and Economy of Photovoltaic Coupled Water Electrolysis Hydrogen Production System As a Kind of Virtual Power Plant Resource[J]. Power Generation Technology, 2023, 44(4): 465-472.
阶段 | 光伏电站出力 | 电解水制氢运行功率 | 虚拟电厂外部特性 | 虚拟电厂外部响应资源与功能 |
---|---|---|---|---|
1 | (0,α] | (0.5P1-α,0.5P1] | 负荷态 | 容量为0.5P1-α的稳定可控负荷资源 |
2 | (α,0.5P1] | (α,0.5P1] | 平衡态 | 全额消纳波动光伏,支撑电网 |
3 | (0.5P1,P1] | (0,0.5P1] | 电源态 | 容量为0.5P1的稳定电源资源 |
4 | (0,0.5P1] | (0,0.5P1] | 平衡态 | 全额消纳波动光伏,支撑电网 |
5 | 0 | 0.5P1 | 负荷态 | 在谷电时段,容量为0.5P1的稳定可控负荷资源 |
Tab. 1 Baseline operation mode framework
阶段 | 光伏电站出力 | 电解水制氢运行功率 | 虚拟电厂外部特性 | 虚拟电厂外部响应资源与功能 |
---|---|---|---|---|
1 | (0,α] | (0.5P1-α,0.5P1] | 负荷态 | 容量为0.5P1-α的稳定可控负荷资源 |
2 | (α,0.5P1] | (α,0.5P1] | 平衡态 | 全额消纳波动光伏,支撑电网 |
3 | (0.5P1,P1] | (0,0.5P1] | 电源态 | 容量为0.5P1的稳定电源资源 |
4 | (0,0.5P1] | (0,0.5P1] | 平衡态 | 全额消纳波动光伏,支撑电网 |
5 | 0 | 0.5P1 | 负荷态 | 在谷电时段,容量为0.5P1的稳定可控负荷资源 |
谷电价格/[元/(kW⋅h)] | 制氢谷电支出/万元 | 制氢年收益/万元 | 填谷谷电支出/万元 | 填谷年收益/万元 |
---|---|---|---|---|
0.353 9 | 2 025.44 | 263.84 | 339.74 | 428.26 |
0.257 9 | 147 6.01 | 813.27 | 247.58 | 520.42 |
0.100 0 | 572.32 | 1 716.96 | 96.00 | 672.00 |
0 | 0 | 2 289.28 | 0 | 768.00 |
0.319 4 | 1 827.88 | 461.40 | 306.60 | 461.40 |
Tab. 2 Annual benefit with different valley electricity prices of two modes
谷电价格/[元/(kW⋅h)] | 制氢谷电支出/万元 | 制氢年收益/万元 | 填谷谷电支出/万元 | 填谷年收益/万元 |
---|---|---|---|---|
0.353 9 | 2 025.44 | 263.84 | 339.74 | 428.26 |
0.257 9 | 147 6.01 | 813.27 | 247.58 | 520.42 |
0.100 0 | 572.32 | 1 716.96 | 96.00 | 672.00 |
0 | 0 | 2 289.28 | 0 | 768.00 |
0.319 4 | 1 827.88 | 461.40 | 306.60 | 461.40 |
1 | 刘雨佳,樊艳芳,郝俊伟,等 .基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J].电力系统保护与控制,2022,50(10):48-60. |
LIU Y J, FAN Y F, HAO J W,et al .Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J].Power System Protection and Control,2022,50(10):48-60. | |
2 | 杨秀,胡晓龙,孙改平,等 .考虑电能共享的楼宇虚拟电厂协调优化调度[J].电力科学与技术学报,2022,37(1):96-105. |
YANG X, HU X L, SUN G P,et al .Coordinated optimization scheduling of building virtual power plant considering power sharing[J].Journal of Electric Power Science and Technology,2022,37(1):96-105. | |
3 | 杨洪朝,杨迪,孟科 .高比例可再生能源渗透下多虚拟电厂多时间尺度协调优化调度[J].智慧电力,2021,49(2):60-68. doi:10.3969/j.issn.1673-7598.2021.02.011 |
YANG H C, YANG D, MENG K .Multi-time scale coordination optimal scheduling of multiple virtual power plants with high-penetration renewable energy integration[J].Smart Power,2021,49(2):60-68. doi:10.3969/j.issn.1673-7598.2021.02.011 | |
4 | ISHAQ H, DINCER I .Comparative assessment of renewable energy-based hydrogen production methods[J].Renewable Sustain Energy Review, 2021,135:110192. doi:10.1016/j.rser.2020.110192 |
5 | YILMAZ F, OZTURK M, SELBAS R .Design and thermodynamic modeling of a renewable energy based plant for hydrogen production and compression[J].International Journal of Hydrogen Energy,2020,45(49):23126-23137. doi:10.1016/j.ijhydene.2019.12.133 |
6 | AMMI Q, DINCER I .Energy and exergy analyses of an integrated renewable energy system for hydrogen production[J].Energy,2020,204:117945. doi:10.1016/j.energy.2020.117945 |
7 | 刘海涛,朱海南,李丰硕,等 .计及碳成本的电-气-热-氢综合能源系统经济运行策略[J].电力建设,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 |
LIU H T, ZHU H N, LI F S,et al .Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J].Electric Power Construction,2021,42(12):21-29. doi:10.12204/j.issn.1000-7229.2021.12.003 | |
8 | 希望⋅阿不都瓦依提,吕海鹏,晁勤 .基于非合作博弈的风-光-氢微电网容量优化配置[J].电力工程技术,2022,41(2):110-118. |
XIWANG A, LÜ H P, CHAO Q .Optimal capacity configuration of wind-photovoltaic-hydrogen microgrid based on non-cooperative game theory[J].Electric Power Engineering Technology,2022,41(2):110-118. | |
9 | 李雪临,袁凌 .海上风电制氢技术发展现状与建议[J].发电技术,2022,43(2):198-206. doi:10.12096/j.2096-4528.pgt.22032 |
LI X L, YUAN L .Development status and suggestions of hydrogen production technology by offshore wind power[J].Power Generation Technology,2022,43(2):198-206. doi:10.12096/j.2096-4528.pgt.22032 | |
10 | 韩华春,李强,袁晓冬 .考虑柔性氢需求的区域综合能源系统优化调度方法[J].电力科学与技术学报,2022,37(3):12-18. |
HAN H C, LI Q, YUAN X D .Optimal dispatch of regional integrated energy systems considering flexible hydrogen demand[J].Journal of Electric Power Science and Technology,2022,37(3):12-18. | |
11 | MOHAMMADI A, MEHRPOOYA M .A comprehensive review on coupling different types of electrolyzer to renewable energy sources[J].Energy, 2018,158:632-655. doi:10.1016/j.energy.2018.06.073 |
12 | 宋天琦,刘惠萍 .电转氢技术融入分布式智慧能源的应用模式研讨[J].上海节能,2021(3):290-293. doi:10.13770/j.cnki.issn2095-705x.2021.03.010 |
SONG T Q, LIU H P .Discussion on application mode of electric power to hydrogen technology integrated into distributed intelligent energy[J].Shanghai Energy Conservation,2021(3):290-293. doi:10.13770/j.cnki.issn2095-705x.2021.03.010 | |
13 | KLYAPOVSKIY S, ZHENG Y, YOU S,et al .Optimal operation of the hydrogen-based energy management system with P2X demand response and ammonia plant[J].Applied Energy,2021,304:117559. doi:10.1016/j.apenergy.2021.117559 |
14 | WANG X, ZHAO H .Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost[J].Applied Energy, 2022,312:118750. doi:10.1016/j.apenergy.2022.118750 |
15 | 魏向向,杨德昌,叶斌 .能源互联网中虚拟电厂的运行模式及启示[J].电力建设,2016,37(4):2-10. doi:10.3969/j.issn.1000-7229.2016.04.001 |
WEI X X, YANG D C, YE B .Operation mode of virtual power plant in energy internet and its enlightenment[J].Electric Power Construction,2016,37(4):2-10. doi:10.3969/j.issn.1000-7229.2016.04.001 | |
16 | 卫志农,张思德,孙国强,等 .基于碳交易机制的电—气互联综合能源系统低碳经济运行[J].电力系统自动化,2016,40(15):9-16. doi:10.7500/AEPS20151109004 |
WEI Z N, ZHANG S D, SUN G Q,et al . Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J].Automation of Electric Power Systems, 2016,40(15):9-16. doi:10.7500/AEPS20151109004 | |
17 | 周任军,吕佳,张武军,等 .气电虚拟电厂多能源市场竞标策略[J].中国电力,2018,51(7):120-127. doi:10.11930/j.issn.1004-9649.201802056 |
ZHOU R J, LÜ J, ZHANG W J,et al .Bidding strategies for gas-electricity virtual power plants in multi-energy market[J].Electric Power,2018,51(7):120-127. doi:10.11930/j.issn.1004-9649.201802056 | |
18 | 张军六,樊伟,谭忠富,等 .计及需求响应的气电互联虚拟电厂多目标调度优化模型[J].电力建设,2020,41(2):1-10. |
ZHANG J L, FAN W, TAN Z F,et al . Multi-objective optimization model of gas electricity interconnected virtual power plant considering demand response[J].Electric Power Construction,2020,41(2):1-10. | |
19 | 范松丽,艾芊,贺兴 .基于机会约束规划的虚拟电厂调度风险分析[J].中国电机工程学报,2015,35(16): 4025-4034. doi:10.13334/j.0258-8013.pcsee.2015.16.004 |
FAN S L, AI Q, HE X .Risk analysis on dispatch of virtual power plant based on chance constrained programming[J].Proceedings of the CSEE,2015,35(16): 4025-4034. doi:10.13334/j.0258-8013.pcsee.2015.16.004 | |
20 | 赵亮,黎嘉明,艾小猛,等 .光伏出力随机性分量的提取和统计特性分析[J].电力系统自动化,2017,41(1):48-56. doi:10.7500/AEPS20160225007 |
ZHAO L, LI J M, AI X M,et al .Analysis on random component extraction and statistical characteristics of photovoltaic power[J].Automation of Electric Power Systems,2017,41(1):48-56. doi:10.7500/AEPS20160225007 | |
21 | 白宏坤,王江波,刘军会,等 .不同调峰模式下负荷聚集商参与程度研究[J].电气自动化,2019,41(5):16-30. doi:10.3969/j.issn.1000-3886.2019.05.006 |
BAI H K, WANG J B, LIU J H,et al .Research on degree of participation of load aggregators in different peaks shaving modes[J].Electrical Automation,2019, 41(5):16-30. doi:10.3969/j.issn.1000-3886.2019.05.006 | |
22 | 毛田,黄宁馨,程韧利,等 .虚拟电厂效益评价指标体系构建及其范例分析[J].南方电网技术,2022,16(6):1-7. |
MAO T, HUANG N X, CHENG R L,et al .Construction for the benefit evaluation index system of virtual power plant and its example analysis[J].Southern Power System Technology,2022,16(6):1-7. |
[1] | Bin ZHAO, Gao LIANG, Menghao JIANG, Gang ZOU, Li WANG. Grid-Connected Power Fluctuation Suppression and Energy Storage Optimization Configuration of Photovoltaic-Energy Storage System [J]. Power Generation Technology, 2024, 45(3): 423-433. |
[2] | Yiwei QIAN, Hao TIAN, Caihua LIU, Xinze TIAN, Xia ZHOU, Jianfeng DAI. Droop Control Strategy of Distributed Photovoltaic Reactive Power Considering Probability Distribution [J]. Power Generation Technology, 2024, 45(2): 273-281. |
[3] | Xiaobiao FU, Jiaqi HOU, Baoju LI, Yakun WEN, Xiaowen LAI, Lei GUO, Zhiwei WANG, Yao WANG, Haifeng ZHANG, Dexin LI. A Two-Modal Weather Classification Method and Its Application in Photovoltaic Power Probability Prediction [J]. Power Generation Technology, 2024, 45(2): 299-311. |
[4] | Yeqing ZHANG, Wenbin CHEN, Lüjun XU, Xingwen JIANG. Multi-Virtual Power Plant-Oriented Dynamic Aggregation Control Strategy Based on Hierarchical Partition and Multi-Layer Complementation [J]. Power Generation Technology, 2024, 45(1): 162-169. |
[5] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[6] | Xingyuan XU, Haoyong CHEN, Yuxiang HUANG, Xiaobin WU, Yushen WANG, Junhao LIAN, Jianbin ZHANG. Challenges, Strategies and Key Technologies for Virtual Power Plants in Market Trading [J]. Power Generation Technology, 2023, 44(6): 745-757. |
[7] | Songyuan YU, Junsong ZHANG, Zhiwei YUAN, Fang FANG. Resilience Enhancement Strategy of Combined Heat and Power-Virtual Power Plant Considering Thermal Inertia [J]. Power Generation Technology, 2023, 44(6): 758-768. |
[8] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[9] | Zhonghao QIAN, Jun HU, Sichen SHEN, Ting QIN, Hanyi MA, Xiaodong WANG, Caoyi FENG, Zhinong WEI. Multi-Power Coordinated Optimization Operation Strategy Considering Conditional Value at Risk [J]. Power Generation Technology, 2023, 44(6): 781-789. |
[10] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[11] | He HUANG, Yan WANG, Nian JIANG, Qiang WU, Yajing ZHANG, Xiuyuan YANG. Optimal Control of Residents’ Controllable Load Resources Considering Different Demands of Users [J]. Power Generation Technology, 2023, 44(6): 896-908. |
[12] | Qiuye SUN, Jia YAO, Yifan WANG. From Virtual Power Plant to Real Electricity: Summary and Prospect of Virtual Power Plant Research [J]. Power Generation Technology, 2023, 44(5): 583-601. |
[13] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[14] | Haoyong CHEN, Yuxiang HUANG, Yang ZHANG, Fei WANG, Liang ZHOU, Junbo TANG, Xiaobin WU. Architecture Design of Virtual Power Plant Based on “Three Flow Separation-Convergence” [J]. Power Generation Technology, 2023, 44(5): 616-624. |
[15] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||