Power Generation Technology ›› 2022, Vol. 43 ›› Issue (3): 452-461.DOI: 10.12096/j.2096-4528.pgt.22061
• Carbon Neutrality • Previous Articles Next Articles
Weizhong FENG1,2, Li LI1,2
Received:
2022-03-20
Published:
2022-06-30
Online:
2022-07-06
CLC Number:
Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets[J]. Power Generation Technology, 2022, 43(3): 452-461.
方案 | 典型节能量/ [g⋅(kW⋅h)-1] | 典型成本/万元 | 单位节能量成本/ [万元⋅g-1⋅(kW⋅h)-1] | 综合性价比 |
---|---|---|---|---|
汽轮机通流部分改造 | 10 | 5 500 | 550 | 理论性价比高,实际普遍收益快速衰减,导致 实际单位投资翻倍甚至无法回本 |
跨代升级改造为准二次再热机组 | 25 | 85 000 | 3 400 | 投资过高,性价比很低;若考虑效率衰减, 实际性价比更低 |
保持压力不变,主、再热汽温升至566 ℃ | 15 | 20 000 | 1 330 | 性价比较低,若考虑效率衰减,实际性价比更低 |
高温亚临界综合升级改造 | 35 | 35 000 (29 000) | 1 000 (829) | 性价比较好,能长期保效,大幅延寿且同时有 深调能力,综合性价比高 |
Tab. 1 Cost performance comparison between typical energy-saving technologies of 300 MW subcritical coal-fired power units
方案 | 典型节能量/ [g⋅(kW⋅h)-1] | 典型成本/万元 | 单位节能量成本/ [万元⋅g-1⋅(kW⋅h)-1] | 综合性价比 |
---|---|---|---|---|
汽轮机通流部分改造 | 10 | 5 500 | 550 | 理论性价比高,实际普遍收益快速衰减,导致 实际单位投资翻倍甚至无法回本 |
跨代升级改造为准二次再热机组 | 25 | 85 000 | 3 400 | 投资过高,性价比很低;若考虑效率衰减, 实际性价比更低 |
保持压力不变,主、再热汽温升至566 ℃ | 15 | 20 000 | 1 330 | 性价比较低,若考虑效率衰减,实际性价比更低 |
高温亚临界综合升级改造 | 35 | 35 000 (29 000) | 1 000 (829) | 性价比较好,能长期保效,大幅延寿且同时有 深调能力,综合性价比高 |
1 | 李延和,杨立滨,郝丽丽,等 .基于改进样板机法的风光互补新能源电站容量配比优化[J].电力工程技术,2022,41(2):224-233. doi:10.12158/j.2096-3203.2022.02.030 |
LI Y H, YANG L B, HAO L L,et al .Capacity ratio optimization of wind-solar hybrid new energy power station based on improved model-generator method[J].Electric Power Engineering Technology,2022,41(2):224-233. doi:10.12158/j.2096-3203.2022.02.030 | |
2 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. |
WEN J Y, ZHOU B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,50(7):1-10. | |
3 | 王伟胜,林伟芳,何国庆,等 .美国得州2021年大停电事故对我国新能源发展的启示[J].中国电机工程学报,2021,41(12):4033-4043. doi:10.13334/j.0258-8013.pcsee.210749 |
WANG W S, LIN W F, HE G Q,et al .Enlightenment of 2021 Texas blackout to the renewable energy development in China[J].Proceedings of the CSEE,2021,41(12):4033-4043. doi:10.13334/j.0258-8013.pcsee.210749 | |
4 | 谢国辉,李娜娜,元博 .我国新能源开发路线图分析方法及模型[J].发电技术,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 |
XIE G H, LI N N, YUAN B .Analysis methods and model of new energy developing roadmap in China[J].Power Generation Technology,2020,41(6):631-637. doi:10.12096/j.2096-4528.pgt.19174 | |
5 | 丁立,乔颖,鲁宗相,等 .高比例风电对电力系统调频指标影响的定量分析[J].电力系统自动化,2014,38(14):1-8. doi:10.7500/AEPS20130810001 |
DING L, QIAO Y, LU Z X,et al .Impact on frequency regulation of power system from wind power with high penetration[J].Automation of Electric Power Systems,2014,38(14):1-8. doi:10.7500/AEPS20130810001 | |
6 | 何世恩,董新洲 .大规模风电机组脱网原因分析及对策[J].电力系统保护与控制,2012,40(1):131-137. doi:10.7667/j.issn.1674-3415.2012.01.023 |
HE S E, DONG X Z, CHAI Y T .Cause analysis on large-scale wind turbine tripping and its countermeasures[J].Power System Protection and Control,2012,40(1):131-137. doi:10.7667/j.issn.1674-3415.2012.01.023 | |
7 | 中国能源报 .风电大基地带来并网新挑战,当年大规模脱网事故会否重演?[EB/OL].(2020-05-19)[2022-03-17].. |
8 | CUI R Y, NATHAN H, CUI D Y,et al .A plant-by-plant strategy for high-ambition coal power phaseout in China[EB/OL].(2021-03-16)[2022-03-17]. . |
9 | 周宏春,李长征,周春 .我国能源领域科学低碳转型研究与思考[J].中国煤炭,2022,48(1):2-9. doi:10.3969/j.issn.1006-530X.2022.01.002 |
ZHOU H C, LI C Z, ZHOU C .Research and thinking on scientific low-carbon transformation in China’s energy field[J].China Coal,2022,48(1):2-9. doi:10.3969/j.issn.1006-530X.2022.01.002 | |
10 | 朱法华,徐静馨,潘超,等 .煤电在碳中和目标实现中的机遇与挑战[J].电力科技与环保,2022,38(2):79-86. |
ZHU F H, XU J X, PAN C,et .al.Opportunities and challenges of coal power industry in the achievement of carbon neutrality goal[J].Electric Power Technology and Environmental Protection,2022,38(2):79-86. | |
11 | 冷喜武 .美国得州2021轮停事故分析及其对中国电网改革的启示[J].发电技术,2021,42(2):151-159. doi:10.12096/j.2096-4528.pgt.21027 |
LENG X W .The analysis of 2021 Texas’ rotating blackout incident and its enlightenment to the reform of China power grid[J].Power Generation Technology,2021,42(2):151-159. doi:10.12096/j.2096-4528.pgt.21027 | |
12 | 刘文胜,吕洪坤,童家麟,等 .600 MW亚临界锅炉深度调峰动态试验研究[J].锅炉技术,2021,52(2):19-24. doi:10.3969/j.issn.1672-4763.2021.02.004 |
LIU W S, LYU H K, TONG J L,et al .Experimental study on 30% rated depth peak-load for a 600 MW subcritical boiler[J].Boiler Technology,2019,50(4):59-65. doi:10.3969/j.issn.1672-4763.2021.02.004 | |
13 | 金利鹏,赵佳骏,吴剑波,等 .330 MW亚临界机组深度调峰运行优化研究[J].节能技术,2021,39(2):127-131. doi:10.3969/j.issn.1002-6339.2021.02.006 |
JIN L P, ZHAO J J, WU J B, et al .Research on the deep peaking optimization operation of 330 MW subcritical unit[J].Energy Conservation Technology,2021,39(2):127-131. doi:10.3969/j.issn.1002-6339.2021.02.006 | |
14 | 刘爱国,张健赟,赵树成,等 .300 MW和600 MW等级汽轮机通流改造经济性研究[J].能源工程,2021(6):69-73. |
LIU A G, ZHANG J Y, ZHAO S C,et .al.Economic study on flow passage retrofits of 300 MW-class and 600 MW-class steam turbines[J].Energy Engineering,2021(6):69-73. | |
15 | 谭锐,徐星,邵峰,等 .300 MW等级亚临界汽轮机通流改造综述[J].汽轮机技术,2017,59(4):291-294. doi:10.3969/j.issn.1001-5884.2017.04.015 |
TAN R, XU X, SHAO F,et al .Review of the flow path retrofit of 300 MW class subcritical steam turbine[J].Turbine Technology,2017,59(4):291-294. doi:10.3969/j.issn.1001-5884.2017.04.015 | |
16 | 常征,张振华,赵文波,等 .亚临界机组提升参数与跨代升级改造方案比较[J].发电与空调,2017,38(1):21-24. doi:10.3969/J.ISSN.2095-3429.2017.01.005 |
CHANG Z, ZHANG Z H, ZHAO W B,et al .Upgrade scheme comparison between parameter-increase and cross-genera-tion for subcritical unit[J].Power Generation & Air Condition,2017,38(1):21-24. doi:10.3969/J.ISSN.2095-3429.2017.01.005 | |
17 | FENG W Z, LI L .The high-temperature retrofit research and application of subcritical units[J].Fuel,2020,268:117167. doi:10.1016/j.fuel.2020.117167 |
18 | FENG W Z .Developing green,highly efficient coal-fired power technologies[C]//International Conference on ASME Power Conference Collocated with the ASME International Conference on Energy Sustainability.San Diego,California,USA:ASME,2015:49551. doi:10.1115/power2015-49551 |
19 | FENG W Z .Generalized regeneration theory and its energy saving and emission reduction effects on coal-fired power generation[C]//ASME Power Conference Collocated with the ASME International Conference on Energy Sustainability & the ASME International Conference on Fuel Cell Science.Charlotte,North Carolina,USA:ASME,2016:59166. doi:10.1115/power2016-59166 |
20 | 刘云锋,李宇峰,王健,等 .汽轮机深度调峰的水蚀问题研究[J].发电技术,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 |
LIU Y F, LI Y F, WANG J,et al .Study on water erosion in deep peak shaving of steam turbine[J].Power Generation Technology,2021,42(4):473-479. doi:10.12096/j.2096-4528.pgt.21012 | |
21 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39,183(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
22 | 刘忠秋,张国柱,邱寅晨,等 .热电联产机组集成热泵实现热电解耦的潜力与能耗特性分析[J].发电技术,2019,40(3):253-257. doi:10.12096/j.2096-4528.pgt.19073 |
LIU Z Q, ZHANG G Z, QIU Y C,et al .Analyses on heat-power decoupling potential and energy consumption characteristics for CHP plant integrated with heat pump[J].Power Generation Technology,2019,40(3):253-257. doi:10.12096/j.2096-4528.pgt.19073 | |
23 | 王新居 .空预器堵塞原因分析及预防措施[J].发电与空调,2015,36(6):54-56. doi:10.3969/J.ISSN.2095-3429.2015.06.016 |
WANG X J .Blocking reason analysis and preventive measures of air preheater[J].Power Generation & Air Condition,2015,36(6):54-56. doi:10.3969/J.ISSN.2095-3429.2015.06.016 | |
24 | 王云鹏 .锅炉结焦原因分析及对策[J].中国设备工程,2020(15):165-166. doi:10.3969/j.issn.1671-0711.2020.15.082 |
WANG Y P .Cause analysis and countermeasures of boiler coking[J].China Plant Engineering,2020(15):165-166. doi:10.3969/j.issn.1671-0711.2020.15.082 | |
25 | 陈洪 .电厂锅炉结焦原因与预防性措施探讨[J].中国设备工程,2021(24):187-188. doi:10.3969/j.issn.1671-0711.2021.24.117 |
CHEN H .Discussion on coking causes and preventive measures of boiler in power plant[J].China Plant Engineering,2021(24):187-188. doi:10.3969/j.issn.1671-0711.2021.24.117 | |
26 | FENG W Z .China’s national demonstration project achieves around 50% net efficiency with 600 ℃ class material[J].Fuel,2018,223:334-353. doi:10.1016/j.fuel.2018.01.060 |
27 | 王婷,郭馨,殷亚宁,等 .浅析700 ℃超超临界锅炉关键技术[J].电站系统工程,2021,37(6):15-17. |
WANG T, GUO X, YIN Y N,et .al.Discussion on key technologies of 700 ℃ ultra supercritical boiler[J].Power System Engineering,2021,37(6):15-17. | |
28 | 毛健雄,郭慧娜,吴玉新 .中国煤电低碳转型之路:国外生物质发电政策/技术综述及启示[J].洁净煤技术,2022,28(3):1-11. |
MAO J X, GUO H N, WU Y X .Road to low-carbon transformation of coal power in China:a review of biomass co-firing policies and technologies for coal power abroad and its inspiration on biomass utilization[J].Clean Coal Technology,2022,28(3):1-11. | |
29 | 张东旺,范浩东,赵冰,等 .国内外生物质能源发电技术应用进展[J].华电技术,2021,43(3):70-75. doi:10.3969/j.issn.1674-1951.2021.03.011 |
ZHANG D W, FAN H D, ZHAO B,et al .Development of biomass power generation technology at home and abroad[J].Huadian Technology,2021,43(3):70-75. doi:10.3969/j.issn.1674-1951.2021.03.011 | |
30 | 兰凤春,李晓宇,龙辉 .欧洲大型燃煤锅炉耦合生物质发电技术综述[J].华电技术,2020,42(10):88-94. doi:10.3969/j.issn.1674-1951.2020.10.012 |
LAN F C, LI X Y, LONG H .Review of biomass power generation technology coupled with large coal‑fired boilers in Europe[J].Huadian Technology,2020,42(10):88-94. doi:10.3969/j.issn.1674-1951.2020.10.012 | |
31 | Daily Energy .英国发电厂接近全面弃煤[J].中外能源,2020,25(7):98-99. |
Daily Energy .UK power plants close to full coal abandonment[J].Sino-Global Energy,2020,25(7):98-99. | |
32 | 王一坤,徐晓光,王栩,等 .燃煤机组多源耦合发电技术及应用现状[J].热力发电,2022,51(1):60-68. |
WANG Y K, XU X G, WANG X,et al .Multi-source coupling coal-fired power generating technology and its application status[J].Thermal Power Generation,2022,51(1):60-68. | |
33 | 余东津,端木琳 .光伏光热系统提高效率的方法[J].区域供热,2019(1):94-102. |
YU D J, DUANMU L .Method for improving efficiency of photovoltaic photothermal system[J].District Heating,2019(1):94-102. | |
34 | 曹晓风,孙波,陈化榜,等 .我国边际土地产能扩增和生态效益提升的途径与研究进展[J].中国科学院院刊,2021,36(3):336-348. |
CAO X F, SUN B, CHEN H B,et al .Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China[J].Bulletin of Chinese Academy of Sciences,2021,36(3):336-348. | |
35 | 魏宁,姜大霖,刘胜男,等 .国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J].中国电机工程学报,2020,40(4):1258-1265. doi:10.13334/j.0258-8013.pcsee.190381 |
WEI N, JIANG D L, LIU S N,et al .Cost competitiveness analysis of retrofitting CCUS to coalfired power plants[J].Proceedings of the CSEE,2020,40(4):1258-1265. doi:10.13334/j.0258-8013.pcsee.190381 | |
36 | 姜大霖,杨琳,魏宁,等 .燃煤电厂实施CCUS改造适宜性评估:以原神华集团电厂为例[J].中国电机工程学报,2019,39(19):5835-5842. doi:10.13334/j.0258-8013.pcsee.190379 |
JIANG D L, YANG L, WEI N,et al .Suitability of retrofitting CCUS to existing coal-fired power plants:a case study of former Shenhua Group[J].Proceedings of the CSEE,2019,39(19):5835-5842. doi:10.13334/j.0258-8013.pcsee.190379 | |
37 | 电力规划设计总院 .中国低碳化发电技术创新发展年度报告2020[M].北京:人民日报出版社,2021. doi:10.30919/esee8c635 |
China Electric Power Planning & Engineering Institute .Annual report on China low-carbon power generation technology innovation and development[M].Beijing:People’s Daily Press,2021. doi:10.30919/esee8c635 | |
38 | 王月明,姚明宇,张一帆,等 .煤电的低碳化发展路径研究[J].热力发电,2022,51(1):11-20. |
WANG Y M, YAO M Y, ZHANG Y F,et al .Study on low-carbon development path of coal-fired power generation[J].Thermal Power Generation,2022,51(1):11-20. |
[1] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[2] | Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2024, 45(2): 199-206. |
[3] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[4] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[5] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[6] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[7] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[8] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[9] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[10] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[11] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[12] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[13] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[14] | Kai ZHU, Yanhong ZHANG. Research on Application of Hydrogen in Power Industry Under “Double Carbon” Circumstance [J]. Power Generation Technology, 2022, 43(1): 65-72. |
[15] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||