Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 199-206.DOI: 10.12096/j.2096-4528.pgt.23164
• Flexible Power Generation Technology • Previous Articles Next Articles
Sihai ZHANG1, Chaoran LI2, Guangliang WAN1, Yinxue LIU1, Hainan XU1, Zhong HUANG2, Hairui YANG2
Received:
2023-12-12
Published:
2024-04-30
Online:
2024-04-29
Contact:
Hainan XU
Supported by:
CLC Number:
Sihai ZHANG, Chaoran LI, Guangliang WAN, Yinxue LIU, Hainan XU, Zhong HUANG, Hairui YANG. Deep Peak Shaving Technology for 330 MW Circulating Fluidized Bed Boiler[J]. Power Generation Technology, 2024, 45(2): 199-206.
锅炉主要参数 | 锅炉最大连续出力工况下的数值 |
---|---|
过热蒸汽流量/(t/h) | 1 177 |
过热蒸汽压力/MPa | 17.5 |
过热蒸汽温度/℃ | 541 |
再热蒸汽流量/(t/h) | 979.6 |
再热蒸汽进(出)口压力/MPa | 4.12(3.94) |
再热蒸汽进(出)口温度/℃ | 341(541) |
给水温度/℃ | 279.6 |
Tab. 1 Design parameters of 330 MW CFB boiler
锅炉主要参数 | 锅炉最大连续出力工况下的数值 |
---|---|
过热蒸汽流量/(t/h) | 1 177 |
过热蒸汽压力/MPa | 17.5 |
过热蒸汽温度/℃ | 541 |
再热蒸汽流量/(t/h) | 979.6 |
再热蒸汽进(出)口压力/MPa | 4.12(3.94) |
再热蒸汽进(出)口温度/℃ | 341(541) |
给水温度/℃ | 279.6 |
类别 | 粒径范围 | |||
---|---|---|---|---|
>13 mm | 10~13 mm | 3~10 mm | <3 mm | |
改造前质量占比/% | 2.45 | 9.45 | 25.82 | 62.73 |
改造后质量占比/% | 0.21 | 1.55 | 27.20 | 71.04 |
Tab. 2 Performance comparison of coal crusher system before and after transformation
类别 | 粒径范围 | |||
---|---|---|---|---|
>13 mm | 10~13 mm | 3~10 mm | <3 mm | |
改造前质量占比/% | 2.45 | 9.45 | 25.82 | 62.73 |
改造后质量占比/% | 0.21 | 1.55 | 27.20 | 71.04 |
检测项目 | 入炉煤 | 原煤 | 煤泥 |
---|---|---|---|
收到基碳质量分数/% | 32.56 | 41.66 | 28.79 |
收到基氢质量分数/% | 1.78 | 2.27 | 1.58 |
收到基氧质量分数/% | 6.55 | 8.32 | 5.81 |
收到基氮质量分数/% | 0.38 | 0.49 | 0.34 |
收到基硫质量分数/% | 0.40 | 0.46 | 0.38 |
收到基水分质量分数/% | 26.30 | 14.00 | 31.40 |
收到基灰分质量分数/% | 32.02 | 32.80 | 31.70 |
收到基挥发分质量分数/% | 35.70 | 35.81 | 35.66 |
收到基低位发热量/(MJ/kg) | 11.30 | 15.39 | 9.60 |
Tab. 3 Coal characteristic of deep peak shaving of the unit under 18% load
检测项目 | 入炉煤 | 原煤 | 煤泥 |
---|---|---|---|
收到基碳质量分数/% | 32.56 | 41.66 | 28.79 |
收到基氢质量分数/% | 1.78 | 2.27 | 1.58 |
收到基氧质量分数/% | 6.55 | 8.32 | 5.81 |
收到基氮质量分数/% | 0.38 | 0.49 | 0.34 |
收到基硫质量分数/% | 0.40 | 0.46 | 0.38 |
收到基水分质量分数/% | 26.30 | 14.00 | 31.40 |
收到基灰分质量分数/% | 32.02 | 32.80 | 31.70 |
收到基挥发分质量分数/% | 35.70 | 35.81 | 35.66 |
收到基低位发热量/(MJ/kg) | 11.30 | 15.39 | 9.60 |
参数 | 时段 | ||||
---|---|---|---|---|---|
12:00 | 13:00 | 14:00 | 15:00 | 16:00 | |
电负荷/MW | 58 | 60 | 58 | 58 | 60 |
给煤机煤量/(t/h) | 14 | 15 | 15 | 15 | 15 |
泵送煤泥量/(t/h) | 39 | 37 | 37 | 37 | 32 |
环境温度/℃ | 27 | 28 | 27 | 28 | 28 |
背压/kPa | 6.8 | 6.1 | 5.6 | 5.9 | 6.3 |
给水流量/(t/h) | 170 | 172 | 165 | 165 | 171 |
给水温度/℃ | 192 | 192 | 190 | 190 | 192 |
主汽流量/(t/h) | 190 | 193 | 188 | 188 | 196 |
主汽温度/℃ | 517 | 520 | 518 | 518 | 519 |
再热汽温度/℃ | 497 | 492 | 491 | 489 | 489 |
一次风机出口风压/kPa | 11.47 | 11.84 | 12.02 | 12.13 | 11.91 |
风室风压/kPa | 10.51 | 10.84 | 11.1 | 11.21 | 10.93 |
平均床压/kPa | 8.55 | 8.81 | 9.20 | 9.33 | 8.98 |
炉膛出口压力/Pa | -34 | -55 | -45 | -52 | -66 |
炉膛上部差压/kPa | 0.27 | 0.30 | 0.24 | 0.23 | 0.25 |
总风量/(×103 m3/h) | 293 | 299 | 292 | 291 | 297 |
一次总风量/(×103 m3/h) | 258 | 265 | 256 | 256 | 262 |
一次流化风量/(×103 m3/h) | 221 | 227 | 218 | 218 | 225 |
A侧烟气再循环量/(×103 m3/h) | 59 | 59 | 59 | 59 | 60 |
B侧烟气再循环量/(×103 m3/h) | 62 | 62 | 62 | 62 | 62 |
二次风量/(×103 m3/h) | 20 | 18 | 21 | 20 | 19 |
空预器一次进口风温/℃ | 91 | 89 | 90 | 91 | 91 |
空预器一次出口风温/℃ | 180 | 175 | 175 | 176 | 177 |
空预器二次进口风温/℃ | 30 | 31 | 31 | 31 | 31 |
空预器二次出口风温/℃ | 248 | 246 | 250 | 251 | 254 |
空预器入口氧体积分数/% | 1.23 | 0.94 | 1.41 | 1.16 | 1.34 |
引风机出口氧体积分数/% | 5.04 | 4.95 | 5.33 | 5.15 | 5.27 |
原烟气SO2质量浓度/(mg/m3) | 391 | 425 | 472 | 619 | 695 |
氨水流量/(m3/h) | 0 | 0.1 | 0 | 0 | 0 |
净烟气NO x 质量浓度/(mg/m3) | 44.0 | 38.8 | 41.3 | 40.7 | 43.2 |
A返料器料位压力/kPa | 5 | 5 | 5 | 5 | 5 |
B返料器料位压力/kPa | 3 | 4 | 3 | 3 | 3 |
C返料器料位压力/kPa | 4 | 4 | 4 | 4 | 4 |
平均床温/℃ | 706 | 701 | 694 | 688 | 691 |
分离器出口烟温/℃ | 607 | 606 | 600 | 599 | 600 |
空预器入口烟温/℃ | 220 | 222 | 223 | 222 | 224 |
空预器出口烟温/℃ | 143 | 144 | 145 | 145 | 146 |
引风机入口烟温/℃ | 134 | 133 | 134 | 134 | 135 |
引风机出口烟温/℃ | 139 | 139 | 140 | 140 | 140 |
引风机入口压力/kPa | -0.623 | -0.679 | -0.666 | -0.648 | -0.688 |
引风机出口压力/kPa | 0.135 | 0.132 | 0.146 | 0.156 | 0.152 |
过热器一减喷水量/(t/h) | 20 | 21 | 20 | 20 | 23 |
过热器二减喷水量/(t/h) | 0 | 0 | 0 | 0 | 0 |
再热器减温水总量/(t/h) | 0 | 0 | 0 | 0 | 0 |
再热器烟气挡板开度/% | 95 | 95 | 95 | 95 | 95 |
过热器烟气挡板开度/% | 5 | 5 | 5 | 5 | 5 |
飞灰含碳质量分数/% | 5.4 | ||||
大渣含碳质量分数/% | 4.19 |
Tab. 4 Operation parameters at 18% load of the unit
参数 | 时段 | ||||
---|---|---|---|---|---|
12:00 | 13:00 | 14:00 | 15:00 | 16:00 | |
电负荷/MW | 58 | 60 | 58 | 58 | 60 |
给煤机煤量/(t/h) | 14 | 15 | 15 | 15 | 15 |
泵送煤泥量/(t/h) | 39 | 37 | 37 | 37 | 32 |
环境温度/℃ | 27 | 28 | 27 | 28 | 28 |
背压/kPa | 6.8 | 6.1 | 5.6 | 5.9 | 6.3 |
给水流量/(t/h) | 170 | 172 | 165 | 165 | 171 |
给水温度/℃ | 192 | 192 | 190 | 190 | 192 |
主汽流量/(t/h) | 190 | 193 | 188 | 188 | 196 |
主汽温度/℃ | 517 | 520 | 518 | 518 | 519 |
再热汽温度/℃ | 497 | 492 | 491 | 489 | 489 |
一次风机出口风压/kPa | 11.47 | 11.84 | 12.02 | 12.13 | 11.91 |
风室风压/kPa | 10.51 | 10.84 | 11.1 | 11.21 | 10.93 |
平均床压/kPa | 8.55 | 8.81 | 9.20 | 9.33 | 8.98 |
炉膛出口压力/Pa | -34 | -55 | -45 | -52 | -66 |
炉膛上部差压/kPa | 0.27 | 0.30 | 0.24 | 0.23 | 0.25 |
总风量/(×103 m3/h) | 293 | 299 | 292 | 291 | 297 |
一次总风量/(×103 m3/h) | 258 | 265 | 256 | 256 | 262 |
一次流化风量/(×103 m3/h) | 221 | 227 | 218 | 218 | 225 |
A侧烟气再循环量/(×103 m3/h) | 59 | 59 | 59 | 59 | 60 |
B侧烟气再循环量/(×103 m3/h) | 62 | 62 | 62 | 62 | 62 |
二次风量/(×103 m3/h) | 20 | 18 | 21 | 20 | 19 |
空预器一次进口风温/℃ | 91 | 89 | 90 | 91 | 91 |
空预器一次出口风温/℃ | 180 | 175 | 175 | 176 | 177 |
空预器二次进口风温/℃ | 30 | 31 | 31 | 31 | 31 |
空预器二次出口风温/℃ | 248 | 246 | 250 | 251 | 254 |
空预器入口氧体积分数/% | 1.23 | 0.94 | 1.41 | 1.16 | 1.34 |
引风机出口氧体积分数/% | 5.04 | 4.95 | 5.33 | 5.15 | 5.27 |
原烟气SO2质量浓度/(mg/m3) | 391 | 425 | 472 | 619 | 695 |
氨水流量/(m3/h) | 0 | 0.1 | 0 | 0 | 0 |
净烟气NO x 质量浓度/(mg/m3) | 44.0 | 38.8 | 41.3 | 40.7 | 43.2 |
A返料器料位压力/kPa | 5 | 5 | 5 | 5 | 5 |
B返料器料位压力/kPa | 3 | 4 | 3 | 3 | 3 |
C返料器料位压力/kPa | 4 | 4 | 4 | 4 | 4 |
平均床温/℃ | 706 | 701 | 694 | 688 | 691 |
分离器出口烟温/℃ | 607 | 606 | 600 | 599 | 600 |
空预器入口烟温/℃ | 220 | 222 | 223 | 222 | 224 |
空预器出口烟温/℃ | 143 | 144 | 145 | 145 | 146 |
引风机入口烟温/℃ | 134 | 133 | 134 | 134 | 135 |
引风机出口烟温/℃ | 139 | 139 | 140 | 140 | 140 |
引风机入口压力/kPa | -0.623 | -0.679 | -0.666 | -0.648 | -0.688 |
引风机出口压力/kPa | 0.135 | 0.132 | 0.146 | 0.156 | 0.152 |
过热器一减喷水量/(t/h) | 20 | 21 | 20 | 20 | 23 |
过热器二减喷水量/(t/h) | 0 | 0 | 0 | 0 | 0 |
再热器减温水总量/(t/h) | 0 | 0 | 0 | 0 | 0 |
再热器烟气挡板开度/% | 95 | 95 | 95 | 95 | 95 |
过热器烟气挡板开度/% | 5 | 5 | 5 | 5 | 5 |
飞灰含碳质量分数/% | 5.4 | ||||
大渣含碳质量分数/% | 4.19 |
1 | 张全斌,周琼芳 .基于 “双碳” 目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
2 | 张松岩,苗世洪,尹斌鑫,等 .考虑火电深度调峰的多类型储能经济性分析[J].电力建设,2022,43(1):132-142. doi:10.12204/j.issn.1000-7229.2022.01.015 |
ZHANG S Y, MIAO S H, YIN B X,et al .Economic analysis of multi-type energy storages considering the deep peak-regulation of thermal power units[J].Electric Power Construction,2022,43(1):132-142. doi:10.12204/j.issn.1000-7229.2022.01.015 | |
3 | 魏文,姜飞,戴双凤,等 .计及需求侧储能事故备用风险与火电机组深度调峰的经济优化研究[J].电力系统保护与控制,2022,50(10):153-162. |
WEI W, JIANG F, DAI S F,et al .Economic optimization of deep peak regulation of thermal power units taking into account the risk of emergency storage on the demand side[J].Power System Protection and Control,2022,50(10):153-162. | |
4 | 于国强,刘克天,胡尊民,等 .大规模新能源并网下火电机组深度调峰优化调度[J].电力工程技术,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 |
YU G Q, LIU K T, HU Z M,et al .Optimal scheduling of deep peak regulation for thermal power units in power grid with large-scale new energy[J].Electric Power Engineering Technology,2023,42(1):243-250. doi:10.12158/j.2096-3203.2023.01.029 | |
5 | 孙浩程,宋民航,郭璞维,等 .辅助火电机组调峰系统的储热参数设计研究[J].南方能源建设,2022,9(3):9-15. doi:10.16516/j.gedi.issn2095-8676.2022.03.002 |
SUN H C, SONG M H, GUO P W,et al .Parameter design of heat storage for auxiliary peak regulation system in thermal power unit[J].Southern Energy Construction,2022,9(3):9-15. doi:10.16516/j.gedi.issn2095-8676.2022.03.002 | |
6 | 张广才,周科,鲁芬,等 .燃煤机组深度调峰技术探讨[J].热力发电,2017,46(9):17-23. doi:10.3969/j.issn.1002-3364.2017.09.017 |
ZHANG G C, ZHOU K, LU F,et al .Discussions on deep peaking technology of coal-fired power plants[J].Thermal Power Generation,2017,46(9):17-23. doi:10.3969/j.issn.1002-3364.2017.09.017 | |
7 | 汤仔华,宋国良,宋维健,等 .循环流化床锅炉快速变负荷调节技术研究进展[J/OL].中国电机工程学报:1-17[2024-02-23]. . |
TANG Z H, SONG G L, SONG W J,et al .Research progress on rapid variable load regulation technology of circulating fluidized bed boiler[J/OL].Proceedings of the CSEE:1-17[2024-02-23]. . | |
8 | 胡仙楠,邓博宇,刘欢鹏,等 .循环流化床锅炉负荷快速调节技术现状及发展趋势[J].洁净煤技术,2023,29(6):11-23. |
HU X N, DENG B Y, LIU H P,et al .Status and development trend of rapid load regulation technology for circulating fluidized bed boiler[J].Clean Coal Technology,2023,29(6):11-23. | |
9 | 蔡晋,单露,王志宁,等 .超临界350 MW循环流化床锅炉变负荷特性[J].热力发电,2020,49(9):98-103. doi:10.19666/j.rlfd.202002012 |
CAI J, SHAN L, WANG Z N,et al .Variable load characteristics of a supercritica1 350 MW circulating fluidized bed boiler[J].Thermal Power Generation,2020,49(9):98-103. doi:10.19666/j.rlfd.202002012 | |
10 | 张鹏,范浩东,余耀,等 .350 MW超临界CFB锅炉不同负荷下运行影响试验[J].洁净煤技术,2021,27(6):93-99. |
ZHANG P, FAN H D, YU Y,et al .Performance of 350 MW supercritical circulating fluidized bed boiler under different loads[J].Clean Coal Technology,2021,27(6):93-99. | |
11 | 王洪健,王海洋,孔皓,等 .135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J].发电技术,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 |
WANG H J, WANG H Y, KONG H,et al .Retrofitting strategy and operating technology of pure burning Zhundong coal in a 135 MW circulating fluidized bed boiler[J].Power Generation Technology,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 | |
12 | 于浩洋,高明明,张缦,等 .循环流化床机组深度调峰性能分析与评价[J].热力发电,2020,49(5):65-72. doi:10.19666/j.rlfd.202002035 |
YU H Y, GAO M M, ZHANG M,et al .Performance analysis and evaluation of deep peak-regulating for circulating fluidized bed units[J].Thermal Power Generation,2020,49(5):65-72. doi:10.19666/j.rlfd.202002035 | |
13 | 单露,张缦,张翼,等 .循环流化床全回路气固流动动态模型及分析[J].中国电机工程学报,2017,37(S1):98-104. |
SHAN L, ZHANG M, ZHANG Y,et al .Dynamic model establishment and analysis on gas-solid flow in CFB whole loop[J].Proceedings of the CSEE,2017,37(S1):98-104. | |
14 | DENG B, ZHOU T, YI Z,et al .Hydrodynamic characteristics in the full-loop circulating fluidized bed under load regulation.Part 1:experimental investigation[J].Chemical Engineering Science,2022,268(7):118361. doi:10.1016/j.ces.2022.118361 |
15 | 韩锐,吴军,廖清芬,等 .基于NSGA-III算法的光-水-火电机组AGC协调优化策略[J].智慧电力,2022,50(1):45-52. |
HAN R, WU J, LIAO Q F,et al .AGC coordination and optimization strategy of photovoltaic-hydropower-thermal power units based on NSGA-III algorithm[J].Smart Power,2022,50(1):45-52. | |
16 | 袁岑颉,戴敏敏,周旭,等 .电力市场环境下火电机组调频性能提升研究[J].浙江电力,2022,41(6):84-91. |
YUAN C J, DAI M M, ZHOU X,et al .Research on frequency modulation performance improvement of thermal power units in the context of power market[J].Zhejiang Electric Power,2022,41(6):84-91. | |
17 | 杨健,柳玉,黄坤鹏,等 .考虑发电工况和站内损耗的风电场可用发电功率估算方法[J].发电技术,2023,44(2):235-243. doi:10.12096/j.2096-4528.pgt.21135 |
YANG J, LIU Y, HUANG K P,et al .A method for estimating available power of wind farms by considering the power generation conditions and station losses[J].Power Generation Technology,2023,44(2):235-243. doi:10.12096/j.2096-4528.pgt.21135 | |
18 | 张志勇,莫华,王猛,等 .600 MW燃煤机组烟气污染物控制研究[J].中国电力,2022,55(5):204-210. |
ZHANG Z Y, MO H, WANG M,et al .Study of flue gas pollutant control in a 600 MW coal-fired unit[J].Electric Power,2022,55(5):204-210. | |
19 | 杨海瑞,岳光溪,王宇,等 .循环流化床锅炉物料平衡分析[J].热能动力工程,2005,20(3):291-295. doi:10.3969/j.issn.1001-2060.2005.03.018 |
YANG H R, YUE G X, WANG Y,et al .Analysis of mass balance in a circulating fluidized bed boiler[J].Journal of Engineering for Thermal Energy and Power,2005,20(3):291-295. doi:10.3969/j.issn.1001-2060.2005.03.018 | |
20 | 杨海瑞,肖显斌, WIRSUM M,等 .循环流化床锅炉内的灰平衡模型研究[J].煤炭转化,2002,25(3):59-64. doi:10.3969/j.issn.1004-4248.2002.03.013 |
YANG H R, XIAO X B, WIRSUM M,et al .Modeling of ash balance in cfb boiler[J].Coal Conversion,2002,25(3):59-64. doi:10.3969/j.issn.1004-4248.2002.03.013 | |
21 | MIAO M, ZHOU T, ZHANG M,et al .Transformation of CFB boilers pollutant treatment strategies under China’s stricter requirements and the background of carbon neutrality (FBC24)[J].Fuel,2023,342:127009. doi:10.1016/j.fuel.2022.127009 |
22 | 刘旋坤,邓博宇,张思海,等 .330 MW CFB锅炉机组深度调峰运行优化[J].洁净煤技术,2022,28(12):87-93. |
LIU X K, DENG B Y, ZHANG S H,et al .Operation and optimization technology of deep peak for 330 MW CFB boiler units[J].Clean Coal Technology,2022,28(12):87-93. | |
23 | 张思海,张双铭,张俊杰,等 .330 MW亚临界CFB锅炉烟气再循环深度调峰运行性能研究[J].洁净煤技术,2021,27(1):291-298. |
ZHANG S H, ZHANG S M, ZHANG J J,et al .Performance research on deep peak regulation with flue gas recirculation in a 330 MW subcritical CFB boiler[J].Clean Coal Technology,2021,27(1):291-298. |
[1] | Huasong DAI, Shaoxu PU, Guoxu CHAI, Li JIN, Weiping CHEN, Mingliang XIE. Research and Application of Deep Peak Shaving of 350 MW Supercritical Fluidized Bed Unit [J]. Power Generation Technology, 2024, 45(3): 401-411. |
[2] | Zhijun JIA, Wei FAN, Shaojun REN, Tangbin WEI. Research on Combustion Stability of a 600 MW Subcritical Power Unit Under Long-Term Deep Peak Shaving [J]. Power Generation Technology, 2024, 45(2): 216-225. |
[3] | Tao GUO, Haiyang YU, Haibo FENG, Hanchuan YUAN, Bing TIAN, Yujie YANG, Yuanbin ZHAO, Qian ZHAO. Experimental Study on the Influence of Air Side Equalizing Device on the Flow Heat Transfer Characteristics of Cooling Delta Unit [J]. Power Generation Technology, 2024, 45(1): 79-89. |
[4] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[5] | Cunqin RUAN, Zhigang HONG, Peican LAI, Jianhua ZHANG, Xikun LIN, Jiang ZHOU, Qianwei FENG, Yang ZHANG. Research on Performance Prediction of Coal-fired Power Plant Denitrification Device Based on Online Monitoring Data [J]. Power Generation Technology, 2023, 44(1): 100-106. |
[6] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[7] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[8] | Qianwei FENG, Renhan ZHU, Sida XU, Bo LIU, Yang ZHANG, Fengji WANG, Yue ZHU. Performance Evaluation and Analysis of Key Parameters of SCR Ultra-low Emission for 1 000 MW Coal-fired Unit [J]. Power Generation Technology, 2022, 43(1): 168-174. |
[9] | Hanxiao LIU, Jianguo LI, Yuping YAO, Ying CUI, Gaofei GUO, Haitao HE, Meiling LIU, Minchao SHEN. Study on SO3 Removal Performance of Low-low Temperature Electrostatic Precipitator System [J]. Power Generation Technology, 2022, 43(1): 147-154. |
[10] | Yunfeng LIU, Yufeng LI, Jian WANG, Yiliang MA, Chun GUAN. Study on Water Erosion in Deep Peak Shaving of Steam Turbine [J]. Power Generation Technology, 2021, 42(4): 473-479. |
[11] | Jiang FAN,Shuangping ZHANG,Yu MENG,Weixiong CHEN,Junjie YAN. Characteristics of NOx Formation and Removal in the Transient Process of a 660 MW Coal-fired Power Unit [J]. Power Generation Technology, 2020, 41(5): 527-535. |
[12] | Xiaoxue AN,Sheng SU,Jun XIANG,Jianxun HUANG,Jizhuang XU,Lele WANG,Yi WANG,Song HU,Zijun YIN,Zhonghui WANG. Hg Formation and Transformation Characteristics in Flue Gas of Coal-fired Boiler [J]. Power Generation Technology, 2020, 41(5): 489-496. |
[13] | Yue ZHU,Yonglong YANG. Influence Analysis on Haze Control of Ultra-low Emission Wet Flue Gas Desulfurization of Coal-fired Power Plants [J]. Power Generation Technology, 2020, 41(3): 295-300. |
[14] | Zhaomei CHEN,Hanxiao LIU,Ying CUI,Gaofei GUO,Yincan MENG,Meiling LIU,Haitao HE,Xiaowei FANG. Study on Generation, Hazard, Testing and Emission Characteristics of SO3 in Flue Gas of Coal-fired Power Plants [J]. Power Generation Technology, 2019, 40(6): 564-569. |
[15] | Zhaomei CHEN,Hanxiao LIU,Ying CUI,Zhibo LIU,Gaofei GUO,Yincan MENG,Meiling LIU. Study on Generation, Treatment, Testing and Emission Characteristics of Hg in Flue Gas of Coal-fired Power Plants [J]. Power Generation Technology, 2019, 40(4): 355-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||