Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 431-442.DOI: 10.12096/j.2096-4528.pgt.22179
• Key Technologies of Green Hydrogen Preparation, Storage and Multi-scenario Application • Next Articles
Donghui CAO, Dongmei DU, Qing HE
Received:
2022-12-02
Published:
2023-08-31
Online:
2023-08-29
Contact:
Qing HE
Supported by:
CLC Number:
Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology[J]. Power Generation Technology, 2023, 44(4): 431-442.
输氢方式 | 优点 | 缺点 |
---|---|---|
长管拖车 | 技术成熟,运输灵活 | 运输量小,压力高,不适合远距离运输 |
液氢槽车 | 容量大,适用于中等距离运输 | 液化成本及能耗高,压力高,易爆 |
管道 | 运输容量大,适用于较远距离运输 | 一次性投资高,需防范氢脆现象 |
Tab. 1 Hydrogen transport modes and their advantages and disadvantages
输氢方式 | 优点 | 缺点 |
---|---|---|
长管拖车 | 技术成熟,运输灵活 | 运输量小,压力高,不适合远距离运输 |
液氢槽车 | 容量大,适用于中等距离运输 | 液化成本及能耗高,压力高,易爆 |
管道 | 运输容量大,适用于较远距离运输 | 一次性投资高,需防范氢脆现象 |
类型 | 工作原理 | 工作条件 | 参数 | 优点 | 缺点 | 应用场景 |
---|---|---|---|---|---|---|
催化传感器 | 可燃气体与催化传感器表面的氧反应,释放热量 | -20~70 ℃, 5%~95%相对湿度, 70~130 kPa | 测量范围<4%, 响应时间<20 s, 功耗大约1 000 mW, 寿命>5 a | 坚固、准确、稳定,耐用性好,工作温度范围宽,成本低 | 高检测限,中毒和交叉敏感,高功率使用,高成本,大尺寸,需要氧气 | 行业标准、石油工业、基础设施、泄漏检测 |
电化学 传感器 | 氢气与传感电极发生电化学反应,引起电荷传输或电学性质的变化,传感器通过检测化学信号的变化实现氢气浓度检测 | -20~55 ℃, 5%~95%相对湿度, 80~110 kPa | 测量范围<4%, 响应时间<30 s, 功耗为2~700 mW, 寿命为2 a | 低检测限、低成本、低功耗、小尺寸,对相对湿度的依赖性低,对氢的灵敏度高,适当的价格、精度和选择性 | 易中毒,0℃以下性能差;由于电极催化剂降解,灵敏度随时间增长而降低 | 低液位检测、个人监测器、泄漏检测、过程监测 |
半导体金属氧化物传感器 | 氢气扩散到传感层并与氧反应后,吸附在半导体金属氧化物表面,吸附层的电阻率降低,且下降值随氢气浓度的增加而增加 | -20~70 ℃, 10%~95%相对湿度, 80~120 kPa | 测量范围<2%, 响应时间<30 s, 功耗<800 mW, 寿命为2~4 a | 成本低,灵敏度高,寿命长,对湿度的敏感度低 | 精度低,依赖温度和湿度,对过度曝光敏感,需要氧气进行操作 | 一般用途、容器泄漏检测 |
热导率 传感器 | 根据不同浓度气体对应的热导率不同的特性,实现对气体浓度的检测 | 0~50 ℃, 0~95%相对湿度, 80~120 kPa | 测量范围为1%~100%, 响应时间<15 s, 功耗<500 mW, 寿命>5 a | 准确度高,检测范围宽,不需要氧气,不易中毒,成本低 | 测量极限高,成本高,对温度依赖性大,对氦交叉敏感 | 建模研究、过程监控 |
光学 传感器 | 利用光学变化来检测氢气 | -15~50 ℃, 0~95%相对湿度, 75~175 kPa | 测量范围为0.1%~100%, 响应时间<60 s, 功耗大约1 000 mW, 寿命<2 a | 无着火风险,监控范围广,对噪声不太敏感,可在缺氧条件下运行 | 对环境光干扰和温度变化敏感,成本高 | 泄漏检测 |
钯(合金)膜 | 当吸附氢气后,氢气释放出电子,与化学吸附层中的氧离子结合,载流子浓度发生变化,该变化值与氢气体积分数存在一定的函数关系 | 室温~500 ℃, 0~95%相对湿度, 高达700 kPa | 测量范围为0.1%~100%, 响应时间为1~130 s, 功耗>25 mW, 寿命<10 a | 快速响应,检测范围非常宽 | 易中毒,成本高,厌氧条件下性能差,易受温度影响 | 石油工业、专业应用,用于各种场景 |
Tab. 2 Parameters, advantages and disadvantages of various hydrogen sensors
类型 | 工作原理 | 工作条件 | 参数 | 优点 | 缺点 | 应用场景 |
---|---|---|---|---|---|---|
催化传感器 | 可燃气体与催化传感器表面的氧反应,释放热量 | -20~70 ℃, 5%~95%相对湿度, 70~130 kPa | 测量范围<4%, 响应时间<20 s, 功耗大约1 000 mW, 寿命>5 a | 坚固、准确、稳定,耐用性好,工作温度范围宽,成本低 | 高检测限,中毒和交叉敏感,高功率使用,高成本,大尺寸,需要氧气 | 行业标准、石油工业、基础设施、泄漏检测 |
电化学 传感器 | 氢气与传感电极发生电化学反应,引起电荷传输或电学性质的变化,传感器通过检测化学信号的变化实现氢气浓度检测 | -20~55 ℃, 5%~95%相对湿度, 80~110 kPa | 测量范围<4%, 响应时间<30 s, 功耗为2~700 mW, 寿命为2 a | 低检测限、低成本、低功耗、小尺寸,对相对湿度的依赖性低,对氢的灵敏度高,适当的价格、精度和选择性 | 易中毒,0℃以下性能差;由于电极催化剂降解,灵敏度随时间增长而降低 | 低液位检测、个人监测器、泄漏检测、过程监测 |
半导体金属氧化物传感器 | 氢气扩散到传感层并与氧反应后,吸附在半导体金属氧化物表面,吸附层的电阻率降低,且下降值随氢气浓度的增加而增加 | -20~70 ℃, 10%~95%相对湿度, 80~120 kPa | 测量范围<2%, 响应时间<30 s, 功耗<800 mW, 寿命为2~4 a | 成本低,灵敏度高,寿命长,对湿度的敏感度低 | 精度低,依赖温度和湿度,对过度曝光敏感,需要氧气进行操作 | 一般用途、容器泄漏检测 |
热导率 传感器 | 根据不同浓度气体对应的热导率不同的特性,实现对气体浓度的检测 | 0~50 ℃, 0~95%相对湿度, 80~120 kPa | 测量范围为1%~100%, 响应时间<15 s, 功耗<500 mW, 寿命>5 a | 准确度高,检测范围宽,不需要氧气,不易中毒,成本低 | 测量极限高,成本高,对温度依赖性大,对氦交叉敏感 | 建模研究、过程监控 |
光学 传感器 | 利用光学变化来检测氢气 | -15~50 ℃, 0~95%相对湿度, 75~175 kPa | 测量范围为0.1%~100%, 响应时间<60 s, 功耗大约1 000 mW, 寿命<2 a | 无着火风险,监控范围广,对噪声不太敏感,可在缺氧条件下运行 | 对环境光干扰和温度变化敏感,成本高 | 泄漏检测 |
钯(合金)膜 | 当吸附氢气后,氢气释放出电子,与化学吸附层中的氧离子结合,载流子浓度发生变化,该变化值与氢气体积分数存在一定的函数关系 | 室温~500 ℃, 0~95%相对湿度, 高达700 kPa | 测量范围为0.1%~100%, 响应时间为1~130 s, 功耗>25 mW, 寿命<10 a | 快速响应,检测范围非常宽 | 易中毒,成本高,厌氧条件下性能差,易受温度影响 | 石油工业、专业应用,用于各种场景 |
1 | WINTER C J .Hydrogen energy:abundant,efficient,clean:a debate over the energy-system-of-change[J].International Journal of Hydrogen Energy,2009,34(14):S1-S52. doi:10.1016/j.ijhydene.2009.05.063 |
2 | 高慧,杨艳,赵旭,等 .国内外氢能产业发展现状与思考[J].国际石油经济,2019,27(4):9-17. doi:10.3969/j.issn.1004-7298.2019.04.002 |
GAO H, YANG Y, ZHAO X,et al .The hydrogen industry at home and abroad[J].International Petroleum Economics,2019,27(4):9-17. doi:10.3969/j.issn.1004-7298.2019.04.002 | |
3 | 于蓬,王健,郑金凤,等 .氢能利用与发展综述[J].汽车实用技术,2019(24):22-25. doi:10.16638/j.cnki.1671-7988.2019.24.008 |
YU P, WANG J, ZHENG J F,et al .Review on hydrogen energy utilization and development[J].Automobile Applied Technology,2019(24):22-25. doi:10.16638/j.cnki.1671-7988.2019.24.008 | |
4 | 王虹,梁雪莲,陈庆玺 .氢能产业政策研究[J].煤气与热力,2020,40(7):27-31. |
WANG H, LIANG X L, CHEN Q X .Research on hydrogen industry policy[J].Gas & Heat,2020,40(7):27-31. | |
5 | 王家恒,韩震 .中国氢燃料电池技术发展现状及趋势[J].汽车实用技术,2019(22):20-23. doi:10.16638/j.cnki.1671-7988.2019.22.008 |
WANG J H, HAN Z .Current situation and trends of fuel cell technology in China[J].Automobile Applied Technology,2019(22):20-23. doi:10.16638/j.cnki.1671-7988.2019.22.008 | |
6 | 杨曜光 .浅谈氢能及制氢的应用技术现状及发展趋势[J].新型工业化,2020,10(6):127-128. doi:10.19335/j.cnki.2095-6649.2020.06.050 |
YANG Y G .Discussion on the present situation and development trend of hydrogen energy and hydrogen production application technology[J].The Journal of New Industrialization,2020,10(6):127-128. doi:10.19335/j.cnki.2095-6649.2020.06.050 | |
7 | 雷超,李韬 .碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI T .Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J].Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
8 | 何青,孟照鑫,沈轶,等 .“双碳”目标下我国氢能政策分析与思考[J].热力发电,2021,50(11):27-36. |
HE Q, MENG Z X, SHEN Y,et al .Analysis and thinking of hydrogen energy policies in China under “double carbon” target[J].Thermal Power Generation,2021,50(11):27-36. | |
9 | 郑津洋,刘自亮,花争立,等 .氢安全研究现状及面临的挑战[J].安全与环境学报,2020,20(1):106-115. |
ZHENG J Y, LIU Z L, HUA Z L,et al .Research status-in-situ and key challenges in hydrogen safety[J].Journal of Safety and Environment,2020,20(1):106-115. | |
10 | 张灿,张明震,申升,等 .中国氢能高质量发展的路径建议与政策探讨[J].南方能源建设,2022,9(4):11-23. |
ZHANG C, ZHANG M Z, SHEN S,et al .Path suggestion and policy discussion for china’s high-quality development of hydrogen energy[J].Southern Energy Construction,2022,9(4):11-23. | |
11 | 程一步 .2022年国内氢能产业发展动态及新政策对产业影响浅析[J].石油石化绿色低碳,2022,7(5):1-6. doi:10.3969/j.issn.2095-0942.2022.05.001 |
CHENG Y B .China’s hydrogen energy industry development and new policy implications in 2022[J].Green Petroleum & Petrochemicals,2022,7(5):1-6. doi:10.3969/j.issn.2095-0942.2022.05.001 | |
12 | 沈丹丹,高顶云,潘相敏 .氢能源利用安全性综述[J].上海节能,2020(11):1236-1246. |
SHEN D D, GAO D Y, PAN X M .Literature review on safety of hydrogen energy utilization[J].Shanghai Energy Conservation,2020(11):1236-1246. | |
13 | 闫晓,闫军芬,陈珂,等 .氢泄漏与扩散研究及加氢站安全防护[J].能源与节能,2022(7):6-10. doi:10.3969/j.issn.2095-0802.2022.07.002 |
YAN X, YAN J F, CHEN K,et al .Research on hydrogen leakage and diffusion and safety protection of hydrogenation station[J].Energy and Energy Conservation,2022(7):6-10. doi:10.3969/j.issn.2095-0802.2022.07.002 | |
14 | 宋睿悦 .敞开环境下低温氢气泄漏危险和扩散特性研究[D].哈尔滨:哈尔滨工程大学,2020. |
SONG R Y .The danger of low temperature hydrogen leakage in open environment and diffusion characteristics[D].Harbin:Harbin Engineering University,2020. | |
15 | HOLBORN P G, BENSON C M, INGRAM J M .Modelling hazardous distances for large-scale liquid hydrogen pool releases[J].International Journal of Hydrogen Energy,2020,45(43):23851-23871. doi:10.1016/j.ijhydene.2020.06.131 |
16 | SUN R F, PU L, YU H S,et al .Investigation of the hazardous area in a liquid hydrogen release with or without fence[J].International Journal of Hydrogen Energy,2021,46(73):36598-36609. doi:10.1016/j.ijhydene.2021.08.155 |
17 | 焦明宇 .燃料电池卡车供氢系统氢气泄漏扩散仿真分析研究[D].北京:北京交通大学,2021. doi:10.3390/wevj12040193 |
JIAO M Y .Research on simulation analysis of hydrogen leakage and diffusion in hydrogen supply system of fuel cell truck[D].Beijing:Beijing Jiaotong University,2021. doi:10.3390/wevj12040193 | |
18 | HAJJI Y, JOUINI B, BOUTERAA M,et al .Numerical study of hydrogen release accidents in a residential garage[J].International Journal of Hydrogen Energy,2015,40(31):9747-9759. doi:10.1016/j.ijhydene.2015.06.050 |
19 | LI Y, JIANG J, YU Y,et al .Numerical simulation of dispersion and distribution behaviors of hydrogen leakage in the garage with a crossbeam[J].Simulation,2019,95(12):1229-1238. doi:10.1177/0037549718825303 |
20 | 商铭恒 .加氢站氢气泄漏燃烧爆炸影响因素模拟分析[D].济南:山东建筑大学,2022. |
SHANG M H .Simulation analysis on influencing factors of hydrogen leakage,combustion and explosion in hydrogen refueling station[D].Jinan:Shandong Jianzhu University,2022. | |
21 | 韩森 .立方舱中浓度梯度氢气爆炸特性研究[D].合肥:合肥工业大学,2019. |
HAN S .Hydrogen explosion characteristics with concentration gradient in cubic enclosure[D].Hefei:Hefei University of Technology,2019. | |
22 | TSUNEMI K, YOSHIDA K, YOSHIDA M,et al .Estimation of consequence and damage caused by an organic hydride hydrogen refueling station[J].International Journal of Hydrogen Energy,2017,42(41):26175-26182. doi:10.1016/j.ijhydene.2017.08.082 |
23 | KIM E, PARK J, CHO J H,et al .Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea[J].International Journal of Hydrogen Energy,2013,38(3):1737-1743. doi:10.1016/j.ijhydene.2012.08.079 |
24 | 许未晴,鲁仰辉,孙晨,等 .天然气掺氢输送系统氢脆研究进展[J].油气储运,2022,41(10):1130-1140. |
XU W Q, LU Y H, SUN C,et al .Research progress on hydrogen embrittlement in hydrogen-blended natural gas transportation system[J].Oil & Gas Storage and Transportation,2022,41(10):1130-1140. | |
25 | 郑津洋,马凯,周伟明,等 .加氢站用高压储氢容器[J].压力容器,2018,35(9):35-42. doi:10.3969/j.issn.1001-4837.2018.09.006 |
ZHENG J Y, MA K, ZHOU W M,et al .High-pressure gaseous hydrogen storage vessel for hydrogen refueling station[J].Pressure Vessel Technology,2018,35(9):35-42. doi:10.3969/j.issn.1001-4837.2018.09.006 | |
26 | MATSUNAGA H, YOSHIKAWA M, KONDO R,et al .Hydrogen-assisted cracking of Cr-Mo steel in slow strain rate tensile test with high-pressure gaseous hydrogen[C]//Proceedings of the ASME 2015 Pressure Vessels and Piping Conference.Boston,Massachusetts,USA:ASME,2015:45742. doi:10.1115/pvp2015-45742 |
27 | MIGUEL N, ACOSTA B, MORETTO P,et al .Hydrogen enhanced fatigue in full scale metallic vessel tests-Results from the MATHRYCE project[J].International Journal of Hydrogen Energy,2017,42(19):13777-13788. doi:10.1016/j.ijhydene.2017.01.144 |
28 | IIJIMA T, ITOGA H, AN B,et al .Fracture properties of a Cr-Mo ferritic steel in high-pressure gaseous hydrogen[C]//Proceedings of the ASME 2015 Pressure Vessels and Piping Conference.Boston,Massachusetts,USA:ASME,2015:45328. doi:10.1115/pvp2015-45328 |
29 | 邹强,田颖,李红松,等 .基于支持向量机的燃料电池发动机氢气泄漏检测方法[J].北京交通大学学报,2020,44(1):84-90. |
ZOU Q, TIAN Y, LI H S,et al .Hydrogen leakage detection method for fuel cell engine based on support vector machine[J].Journal of Beijing Jiaotong University,2020,44(1):84-90. | |
30 | 苗扬,陈彦京,王凯,等 .光面式高压氢气泄漏快速可视化检测方法及数值仿真研究[J].计测技术,2020,40(5):37-42. |
MIAO Y, CHEN Y J, WANG K,et al .A laser sheet method and simulation for rapid visual detection of high pressure hydrogen leakage[J].Metrology & Measure-ment Technology,2020,40(5):37-42. | |
31 | LEIBFRIED T .Online monitors keep transformers in service[J].IEEE Computer Applications in Power,1998,11(3):36-42. doi:10.1109/67.694934 |
32 | SAAD S, HASSINE L .Hydrogen detection with FBG sensor technology for disaster prevention[J].Photonic Sensors,2013,3(3):214-223. doi:10.1007/s13320-013-0109-4 |
33 | 洪皓 .煤炭制氢经济适用性分析[J].能源与节能,2020(12):82-85. |
HONG H .Analysis on economic applicability of hydrogen production from coal[J].Energy and Energy Conservation,2020(12):82-85. | |
34 | 王阳峰,张英,陈春凤,等 .天然气蒸汽重整制氢装置原料优化研究[J].石油与天然气化,2020,49(3):48-52. |
WANG Y F, ZHANG Y, CHEN C F,et al .Study on the optimization of raw material for hydrogen production unit in refinery[J].Chemical Engineering of Oil & Gas,2020,49(3):48-52. | |
35 | 董辉,葛维春,张诗钽,等 .海上风电制氢与电能直接外送差异综述[J].发电技术,2022,43(6):869-879. doi:10.12096/j.2096-4528.pgt.22095 |
DONG H, GE W C, ZHANG S T,et al .Summary of differences between hydrogen production from offshore wind power and direct outward transmission of electric energy[J].Power Generation Technology,2022,43(6):869-879. doi:10.12096/j.2096-4528.pgt.22095 | |
36 | 秦国军,胡鸢庆,袁杰红 .氢泄漏检测技术[M].北京:国防工业出版社,2011. |
QIN G J, HU Y Q, YUAN J H .Hydrogen leakage detection technology[M].Beijing:National Defense Industry Press,2011. | |
37 | 李京祥,文勇,王品 .新形势下建设“一专多能”综合性应急救援队伍的研究[J].化工管理,2021(1):13-15. doi:10.1016/j.cej.2020.127853 |
LI J X, WEN Y, WANG P .Research on constructing a comprehensive emergency rescue team with “one specialty and many abilities” under the new situation[J].Chemical Enterprise Management,2021(1):13-15. doi:10.1016/j.cej.2020.127853 | |
38 | 宣亚雷 .二氧化碳捕获与封存技术应用项目风险评价研究[D].大连:大连理工大学,2013. doi:10.1016/j.toxlet.2013.05.197 |
XUAN Y L .Study on risk assessment of carbon capture and storage technology application project[D].Dalian:Dalian University of Technology,2013. doi:10.1016/j.toxlet.2013.05.197 | |
39 | 杨馥源,田雪沁,徐彤,等 .面向碳中和电力系统转型的电氢枢纽灵活性应用[J].电力建设,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 |
YANG F Y, TIAN X Q, XU T,et al .Flexibility of electro-hydrogen hub for power system transformation under the goal of carbon neutrality[J].Electric Power Construction,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 | |
40 | 张来斌,胡瑾秋,张曦月,等 .氢能制-储-运安全与应急保障技术现状与发展趋势[J].石油科学通报,2021,6(2):167-180. |
ZHANG L B, HU J Q, ZHANG X Y,et al .Research status and development trends of safety and emergency guarantee technology for production,storage and transportation of hydrogen[J].Petroleum Science Bulletin,2021,6(2):167-180. | |
41 | 金星星 .固态氢化物储氢的前景与挑战[J].化工管理,2022(25):93-95. |
JIN X X .Prospect and challenge of solid-state hydride hydrogen storage[J].Chemical Engineering Manage-ment,2022(25):93-95. | |
42 | 何青,沈轶 .风氢耦合储能系统技术发展现状[J].热力发电,2021,50(8):9-17. |
HE Q, SHEN Y .Development status of hydrogen energy storage system coupled wind power generation[J].Thermal Power Generation,2021,50(8):9-17. | |
43 | 郑津洋,张俊峰,陈霖新,等 .氢安全研究现状[J].安全与环境学报,2016,16(6):144-152. |
ZHENG J Y, ZHANG J F, CHEN L X,et al .Research status in situ of hydrogen safety[J].Journal of Safety and Environment,2016,16(6):144-152. | |
44 | 司戈 .氢能源应用的消防安全初探[C]//中国消防协会科学技术年会论文集.北京:中国消防协会,2010:452-456. doi:10.3969/j.issn.1002-784X.2008.01.012 |
SI G .Preliminary study on fire safety of hydrogen energy application[C]//CFPA Annual Meeting on Fire Science and Technology.Beijing:CFPA,2010:452-456. doi:10.3969/j.issn.1002-784X.2008.01.012 | |
45 | FOORGINEZHAD S, MOHSENI-DARGAH M, FALAHATI Z,et al .Sensing advancement towards safety assessment of hydrogen fuel cell vehicles[J].Journal of Power Sources,2021,489:229450. doi:10.1016/j.jpowsour.2021.229450 |
46 | 赵贞贞 .基于光吸收传感的电子鼻气体图谱处理方法研究[D].重庆:重庆大学,2016. |
ZHAO Z Z .Research on processing methods of gas spectrogram in electronic nose based on light absorption sensing[D].Chongqing:Chongqing University,2016. | |
47 | 宫德宇 .腔增强吸收光谱检测痕量气体浓度的研究[D].长春:长春理工大学,2017. |
GONG D Y .Study on trace gas concentration by cavity enhanced absorption spectroscopy[D].Changchun:Changchun University of Science and Technology,2017. | |
48 | 李源,郭志成,孟晓超,等 .基于可调谐二极管激光吸收光谱技术的炉内燃烧场参数在线监测系统设计[J].发电技术,2022,43(2):353-361. doi:10.12096/j.2096-4528.pgt.19183 |
LI Y, GUO Z C, MENG X C,et al .Design of an online monitoring system for combustion field parameter in a furnace based on tunable diode laser absorption spectroscopy technology[J].Power Generation Technology,2022,43(2):353-361. doi:10.12096/j.2096-4528.pgt.19183 | |
49 | 苗扬 .氢泄漏光学检测技术综述[J].北京工业大学学报,2022,48(3):312-330. doi:10.11936/bjutxb2021090012 |
MIAO Y .Overview of optical detection technology for hydrogen leakage[J].Journal of Beijing University of Technology,2022,48(3):312-330. doi:10.11936/bjutxb2021090012 | |
50 | 孟照鑫,何青,胡华为,等 .我国氢能产业发展现状与思考[J].现代化工,2022,42(1):1-6. |
MENG Z X, HE Q, HU H W,et al .Development situation and consideration of hydrogen energy industry in China[J].Modern Chemical Industry,2022,42(1):1-6. | |
51 | 胡华为,何青,孟照鑫 .加氢站高压储氢容器安全性分析[J].现代化工,2022,42(6):9-15. |
HU H W, HE Q, MENG Z X .Analysis on safety of high-pressure hydrogen storage vessel in hydrogen fueling station[J].Modern Chemical Industry,2022,42(6):9-15. |
[1] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[2] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[3] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[4] | Lingguo KONG, Jian GONG, Shihui YANG, Defu NI, Shibo WANG, Chuang LIU. Development Status and Trend of DC/DC Isolated Hydrogen Production Power Supply [J]. Power Generation Technology, 2023, 44(4): 443-451. |
[5] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[6] | Jianlin LI, Chenxi SHAO, Zedong ZHANG, Zhonghao LIANG, Fei ZENG. Analysis of Hydrogen Industry Policy and Commercialization Model [J]. Power Generation Technology, 2023, 44(3): 287-295. |
[7] | Yiwen CHEN, Jinbin ZHAO, Junzhou LI, Ling MAO, Keqing QU, Guoqing WEI. Challenges and Prospects of Hydrogen Energy Storage Under the Background of Low-carbon Transformation of Power Industry [J]. Power Generation Technology, 2023, 44(3): 296-304. |
[8] | Chunyan ZHANG, Zhenlan DOU, Jun WANG, Liangliang ZHU, Xiaotong SUN, Gendi LI. Development Route of Hydrogen Production by Water Electrolysis, Hydrogen Storage and Hydrogen Supply in Power System [J]. Power Generation Technology, 2023, 44(3): 305-317. |
[9] | Yue TENG, Qian ZHAO, Tiejiang YUAN, Guohong CHEN. Key Technology Status and Outlook for Green Electricity-Hydrogen Energy- Multi-domain Applications Coupled Network [J]. Power Generation Technology, 2023, 44(3): 318-330. |
[10] | Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant [J]. Power Generation Technology, 2023, 44(3): 331-339. |
[11] | Yikun HU, Junwen CAO, Wenqiang ZHANG, Bo YU, Jianchen WANG, Jing CHEN. Application Research Progress of High Temperature Solid Oxide Electrolysis Cell [J]. Power Generation Technology, 2023, 44(3): 361-372. |
[12] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[13] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[14] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[15] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||