Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 738-744.DOI: 10.12096/j.2096-4528.pgt.21063

• Power Generation and Environmental Protection • Previous Articles    

Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background

Hanxiao LIU   

  1. Zhejiang Feida Environmental Science & Technology Co. , Ltd. , Zhuji 311800, Zhejiang Province, China
  • Received:2022-11-28 Published:2023-10-31 Online:2023-10-30
  • Supported by:
    National Key Research and Development Program of China(2022YFC3701501);“Vanguard” Plan of Zhejiang Province(2022C03030)

Abstract:

Energy conservation and efficiency improvement under the dual carbon background is the first choice for coal-fired power plants to reduce carbon. The energy efficiency parameters of dry electrostatic precipitator (ESP), wet electrostatic precipitator (WESP), auxiliary equipment and dust removal technology route before and after ultra-low emission transformation were analyzed and evaluated, which could excavate their energy saving and carbon reduction space. Before the transformation of ultra-low emission, the annual CO2 emissions corresponding to the high voltage power consumption of 300 MW, 600 MW and 1000 MW units supporting dry ESP are about 6 000 t, 9 000 t and 14 000 t respectively. In addition, the better the performance of ESP, the higher the corresponding energy consumption and CO2 emission. After the ultra-low emission transformation, the annual CO2 emission corresponding to the high-voltage power supply power consumption of the 1000 MW unit supporting the ESP is about 18 000 t, which increases by about 20% compared with that before the transformation, but could be reduced by about 60% through the energy saving optimization. The annual CO2 emissions corresponding to the high-voltage power supply power consumption of the 300 MW, 600 MW and 1000 MW units supporting the WESP are about 2 000 t, 2500 t and 3400 t, respectively. The low temperature economizer of 630 MW unit could reduce the annual CO2 emission by about 19000 t, and the phase change condenser of 280 t/h furnace could reduce the annual CO2 emission by about 8 000 t. Compared with the WESP removal technology route, the flue gas cooperative treatment technology route of 660 MW unit with low-low temperature ESP removal technology as the core could reduce the annual CO2 emission by about 3 000 t. This paper could provide technical ideas for the carbon emission reduction of subsequent coal-fired power plants.

Key words: coal-fired power, ultra-low emission, power consumption, CO2 emission reduction, carbon peak, carbon neutral

CLC Number: