发电技术 ›› 2025, Vol. 46 ›› Issue (1): 58-71.DOI: 10.12096/j.2096-4528.pgt.23168
张杰1, 宋科1, 张瀚2, 曾云1, 郑鹏3
收稿日期:
2023-12-25
修回日期:
2024-03-28
出版日期:
2025-02-28
发布日期:
2025-02-27
作者简介:
基金资助:
Jie ZHANG1, Ke SONG1, Han ZHANG2, Yun ZENG1, Peng ZHENG3
Received:
2023-12-25
Revised:
2024-03-28
Published:
2025-02-28
Online:
2025-02-27
Supported by:
摘要:
目的 车载供氢系统作为氢燃料电池汽车的核心部件,如何实现供氢系统的氢气完全循环利用及提高氢气利用率,已成为制约氢燃料电池汽车发展的关键瓶颈之一,因此对车载供氢系统发展现状进行了分析。 方法 介绍了车载供氢系统的基本工作原理,概述了6种回氢循环供氢系统与2种非循环供氢系统模式的结构组成、工作原理和发展现状,对比了不同模式供氢系统的优缺点;梳理了车载供氢系统中储氢瓶、加氢模块、组合阀等关键部件的技术现状,并对减压阀、过流阀、手动阀等核心阀件发展现状进行了分析;最后,对车载供氢系统的发展趋势和攻关方向进行了展望。 结论 供氢系统循环模式是未来主要发展方向;先进信息技术、自动控制技术及智能决策算法等将逐步用于车载供氢系统;车载供氢系统各部件逐渐向轻量化、高可靠性、低成本、标准化和模块化方向发展。
中图分类号:
张杰, 宋科, 张瀚, 曾云, 郑鹏. 车载供氢系统发展现状及展望[J]. 发电技术, 2025, 46(1): 58-71.
Jie ZHANG, Ke SONG, Han ZHANG, Yun ZENG, Peng ZHENG. Development Status and Prospects of Onboard Hydrogen Supply Systems[J]. Power Generation Technology, 2025, 46(1): 58-71.
参数 | Ⅰ型 | Ⅱ型 | Ⅲ型 | Ⅳ型 |
---|---|---|---|---|
材质 | 纯钢质金属 | 钢制内胆纤维 | 铝内胆纤维 | 塑料内胆纤维 |
工作压力/MPa | 17.5~20.0 | 26.3~30.0 | 30.0~70.0 | >70 |
质量体积比/(kg⋅L-1) | 0.90~1.30 | 0.60~0.95 | 0.35~1.00 | 0.30~0.80 |
使用寿命/a | 15 | 15 | 15~20 | 15~20 |
储氢密度/(g⋅L-1) | 14.28~17.23 | 14.28~17.23 | 40.40 | 48.80 |
可否车载 | 否 | 否 | 是 | 是 |
成本 | 低 | 中等 | 最高 | 高 |
发展状况 | 国内外技术成熟 | 国内外技术成熟 | 国内外技术成熟,国内已商业化 | 国外技术成熟,国内已开发出产品 |
表1 储氢瓶性能对比
Tab.1 Performance comparison of hydrogen storage cylinders
参数 | Ⅰ型 | Ⅱ型 | Ⅲ型 | Ⅳ型 |
---|---|---|---|---|
材质 | 纯钢质金属 | 钢制内胆纤维 | 铝内胆纤维 | 塑料内胆纤维 |
工作压力/MPa | 17.5~20.0 | 26.3~30.0 | 30.0~70.0 | >70 |
质量体积比/(kg⋅L-1) | 0.90~1.30 | 0.60~0.95 | 0.35~1.00 | 0.30~0.80 |
使用寿命/a | 15 | 15 | 15~20 | 15~20 |
储氢密度/(g⋅L-1) | 14.28~17.23 | 14.28~17.23 | 40.40 | 48.80 |
可否车载 | 否 | 否 | 是 | 是 |
成本 | 低 | 中等 | 最高 | 高 |
发展状况 | 国内外技术成熟 | 国内外技术成熟 | 国内外技术成熟,国内已商业化 | 国外技术成熟,国内已开发出产品 |
1 | 张奥,杨军,吴桐,等 .燃料电池车载氢气供给系统概述[J].船电技术,2019,39(9):53-56. |
ZHANG A, YANG J, WU T,et al .Application of hydrogen supply system for fuel cell vehicles[J].Marine Electric & Electronic Engineering,2019,39(9):53-56. | |
2 | 王伟,曲辅凡,梁荣亮 .现代燃料电池汽车NEXO技术分析[J].汽车零部件,2020(7):90-93. |
WANG W, QU F F, LIANG R L .Analysis of NEXO technology of hyundai fuel cell vehicle[J].Automobile Parts,2020(7):90-93. | |
3 | MINORU M, TATSUYA F, KUNIAKI O .Powertrain system of Honda FCX Clarity fuel cell vehicle[J].World Electric Vehicle Journal,2009,3(4):820–829. doi:10.3390/wevj3040820 |
4 | 冯健美,韩济泉,陈伟,等 .一种燃料电池氢气循环系统及控制方法:CN111785993A[P].2020-10-16. |
FENG J M, HAN J Q, CHEN W,et al .Fuel cell hydrogen circulation system and control method:CN111785993A[P].2020-10-16. | |
5 | 李昌泉,郝义国,胡帅 .一种燃料电池阳极氢气循环系统及其控制方法:CN112563537A[P].2021-03-26. |
LI C Q, HAO Y G, HU S,et al .A fuel cell anode hydrogen circulation system and its control method:CN112563537A[P].2021-03-26. | |
6 | 苏赵琪,李飞强,陈勇刚 .一种燃料电池供氢系统以及车辆:CN218274662U[P].2023-01-10. |
SU Z Q, LI F Q, CHEN Y G .A fuel cell hydrogen supply system and vehicle:CN218274662U[P].2023-01-10. | |
7 | JAMES B D, SPISAK A B, COLELLA W G .Design for manufacturing and assembly cost estimate methodology for transportation fuel cell systems[J].Journal of Manufacturing Science & Engineering,2014,136(2):024503. doi:10.1115/1.4025624 |
8 | 杨祖勇,陈黎 .质子交换膜氢燃料电池供氢系统及控制方法:CN113130941A[P].2021-07-16. |
YANG Z Y, CHEN L .Proton exchange membrane hydrogen fuel cell hydrogen supply system and control method :CN113130941A[P].2021-07-16. | |
9 | 涂正凯,刘洋,赵俊杰,等 .一种质子交换膜燃料电池双引射器循环系统:CN113629275B[P].2023-03-24. |
TU Z K, LIU Y, ZHAO J J,et al .Proton exchange membrane fuel cell dual ejector circulation system:CN113629275B[P].2023-03-24. | |
10 | 尹丛勃,宋和国,陈雷,等 .双引射器系统、氢燃料电池双引射器模块系统、设计方法、新能源汽车:CN114352582A[P].2022-04-15. |
YIN C B, SONG H G, CHEN L,et al .Dual ejector system,hydrogen fuel cell dual ejector module system,design method,new energy vehicle:CN114352582A[P].2022-04-15. | |
11 | 张毅 .丰田FCHV-4型燃料电池汽车的结构特性分析[J].中国科技信息,2011(16):104-105. |
ZHANG Y .Structural characteristics analysis of Toyota FCHV-4 fuel cell vehicle[J].China Science and Technology Information,2011(16):104-105. | |
12 | KOJIMA K, KAZUHIRO F .Current status and future outlook of fuel cell vehicle development in toyota[J].ECS Transactions,2015,69(17):213-219. doi:10.1149/06917.0213ecst |
13 | HWANG J J, WANG D Y, SHIH N C .Development of a lightweight fuel cell vehicle[J].Journal of Power Sources,2005,141(1):108-115. doi:10.1016/j.jpowsour.2004.08.056 |
14 | 许德超,赵洪辉,盛夏,等 .燃料电池湿度控制方法及装置:CN116598544A[P].2023-08-15. |
XU D C, ZHAO H G, SHENG X,et al .Fuel cell humidity control method and device:CN116598544A[P].2023-08-15. | |
15 | 邢子义,王升科,邢晓明 .一种氢气循环泵与引射器串联集成的燃料电池供氢系统:CN112864419B[P].2021-11-09. |
XING Z Y, WANG S K, XING X M .Fuel cell hydrogen supply system with hydrogen circulation pump and ejector integrated in series:CN112864419B[P].2021-11-09. | |
16 | 李勇,邓佳,韦庆省,等 .一种燃料电池供氢系统及其应用的燃料电池系统:CN210224185U[P].2020-03-31. |
LI Y, DENG J, WEI Q S,et al .Fuel cell hydrogen supply system and fuel cell system using same:CN210224185U[P].2020-03-31. | |
17 | JAMES,B D, KALINOSKI J A, BAUM K N,et al .Mass production cost estimation for direct H2 PEM fuel cell system for automotive applications 2009 update[R].New York:Office of Scientific and Technical Information(OSTI),2010. doi:10.2172/1218889 |
18 | TANAKA S, NAGUMO K, YAMAMOTO M,et al .Fuel cell system for Honda Clarity fuel cell[J].eTransportation,2020,3:100046. doi:10.1016/j.etran.2020.100046 |
19 | 任树兴,周百慧,方川,等 .燃料电池多功能氢喷及燃料电池系统、车辆:CN114759220A[P].2022-07-15. |
REN S X, ZHOU B H, FANG C,et al .Fuel cell multifunctional hydrogen injection and fuel cell system,vehicle:CN114759220A[P].2022-07-15. | |
20 | 马明辉,郝冬,郭帅帅,等 .燃料电池发动机氢气供给系统技术分析[J].汽车零部件,2021(5):95-98. |
MA M H, HAO D, GUO S S,et al .Analysis on anode hydrogen supply system of fuel cell engine[J].Automobile Parts,2021(5):95-98. | |
21 | 南泽群,许思传,章道彪,等 .车用PEMFC系统氢气供应系统发展现状及展望[J].电源技术,2016,40(8):1726-1730. |
NAN Z Q, XU S C, ZHANG D B,et al .Development and prospect of hydrogen supply system in vehicle PEMFC[J].Chinese Journal of Power Sources,2016,40(8):1726-1730. | |
22 | UNO M, SHIMADA T, TANAKA K .Reactant recirculation system utilizing pressure swing for proton exchange membrane fuel cell[J].Journal of Power Sources,2011,196(5):2558-2566. doi:10.1016/j.jpowsour.2010.10.094 |
23 | AHLUWALIA R K, WANG X .Fuel cell systems for transportation:status and trends[J].Journal of Power Sources,2008,177(1):167-176. doi:10.1016/j.jpowsour.2007.10.026 |
24 | CHEN J, SIEGEL J B, STEFANOPOULOU A G,et al .Optimization of purge cycle for dead-ended anode fuel cell operation[J].International Journal of Hydrogen Energy,2013,38(12):5092-5105. doi:10.1016/j.ijhydene.2013.02.022 |
25 | HIKITA S, NAKATANI F, YAMANE K,et al .Power-generation characteristics of hydrogen fuel cell with dead-end system[J].JSAE Review,2002,23(2):177-182. doi:10.1016/s0389-4304(02)00161-3 |
26 | DUMERCY L, PÉRA M C, GLISES R,et al .PEFC stack operating in anodic dead end mode[J].Fuel Cells,2004,4(4):352-357. doi:10.1002/fuce.200400053 |
27 | MOÇOTÉGUY P, DRUART F, BULTEL Y,et al .Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead-end mode[J].Journal of Power Sources,2007,167(2):349-357. doi:10.1016/j.jpowsour.2007.02.028 |
28 | Siegel J B, McKay D A, Stefanopoulou A G,et al .Measurement of liquid water accumulation in a PEMFC with dead-end anode[J].Journal of The Electrochemical Society,2008,155(11):1168-1178. doi:10.1149/1.2976356 |
29 | CHOI J W, Y-S HWANG, CHA S W,et al .Experimental study on enhancing the fuel efficiency of an anodic dead-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen[J].International Journal of Hydrogen Energy,2010,35(22):12469-12479. doi:10.1016/j.ijhydene.2010.08.076 |
30 | 崔明月,朱小平,薛科,等 .氢燃料电池车储氢技术及其发展现状[J].汽车实用技术,2022,47(10):173-178. |
CUI M Y, ZHU X P, XUE K,et al .Hydrogen storage technology of hydrogen fuel cell vehicle and its development status[J].Automobile Applied Technology,2022,47(10):173-178. | |
31 | 曹冬惠,杜冬梅,何青 .氢储能安全及其检测技术综述[J].发电技术,2023,44(4):431-442. |
CAO D H, DU D M, HE Q .Summary of hydrogen energy storage safety and its detection technology[J].Power Generation Technology,2023,44(4):431-442. | |
32 | 陈虹港 .70 MPa复合材料氢气瓶液压疲劳试验装置及压力和温度控制方法研究[D].杭州:浙江大学,2014. |
CHEN H G .Research on hydraulic fatigue test device and pressure and temperature control method of 70 MPa composite hydrogen bottle[D].Hangzhou:Zhejiang University,2014. | |
33 | 何广利,杨康,董文平,等 .基于国产三型瓶的氢气加注技术开发[J].储能科学与技术,2020,9(3):696-701. |
HE G L, YANG K, DONG W P,et al .Filling technology development for Type Ⅲ hydrogen tank[J].Energy Storage Science and Technology,2020,9(3):696-701. | |
34 | 苏红艳,何春辉,金碧辉,等 .70 MPa车载Ⅳ型储氢气瓶关键技术及标准化研究[J].中国特种设备安全,2023,39(5):1-8. |
SU H Y, HE C H, JIN B H,et al .Research on key technology and standardization of 70 MPa on-board type Ⅳ hydrogen storage cylinder[J].China Special Equipment Safety,2023,39(5):1-8. | |
35 | 曹宽,李江川,鲁文皓,等 .一种燃料电池车辆及其加氢口故障检测方法及系统:CN115723634A[P].2023-03-03. |
CAO K, LI J C, LU W H,et al .A fault detection method and system for fuel cell vehicles and their hydrogenation outlets:CN115723634A[P].2023-03-03. | |
36 | 唐潘宇,吴方权,马明,等 .一种氢能加注用加注口:CN115489300A[P].2022-12-20. |
TANG P Y, WU F Q, MA M,et al .A filling port for hydrogen energy filling:CN115489300A[P].2022-12-20. | |
37 | 刘仁豪,孙维福,孟令宇 .加氢口和车辆:CN117662987A[P].2024-03-08. |
LIU R H, SUN W F, MENG L Y .Hydrogen inlet and vehicle:CN117662987A[P].2024-03-08. | |
38 | 刘扬,刘汇源 .高压储氢气瓶组合阀的研制[J].通用机械,2008,6(9):93-95. |
LIU Y, LIU H Y .The research and development of combination valves for high-pressure hydrogen cylinder[J].General Machinery,2008,6(9):93-95. | |
39 | YAMASHITA A, KONDO M, GOTO S,et al .Development of high-pressure hydrogen storage system for the toyota“Mirai”[C]//SAE 2015 World Congress & Exhibition.Detroit,Michigan,USA:SAE,2015:1169-1176. doi:10.4271/2015-01-1169 |
40 | HAUSMANN P .Tankvalve:US 10948087B2[P].2021-03-16. doi:10.37544/0173-363x-2021-03-04-46 |
41 | 何春辉,邹宏伟,苏红艳 .70 MPa车载瓶口阀的研究与优化[J].中国特种设备安全,2022,38(9):35-40. |
HE C H, ZOU H W, SU H Y .Research and optimization of 70 MPa on-board tank valve[J].China Special Equipment Safety,2022,38(9):35-40. | |
42 | 何春辉,赵亚丽,陈甲楠,等 .一种氢气瓶口组合阀:CN110726071A[P].2020-01-24. |
HE C H, ZHAO Y L, CHEN J N,et al .Hydrogen bottleneck combination valve:CN110726071A[P].2020-01-24. | |
43 | 国宁,刘伟,杨淮文,等 .车载氢能瓶口阀振动建模与模态试验研究[J].液压气动与密封,2023,43(10):73-77. |
GUO N, LIU W, YANG H W,et al .Study on vibration modeling and modal test of on-board hydrogen energy cylinder valve[J].Hydraulics Pneumatics & Seals,2023,43(10):73-77. | |
44 | 王冰,侍崇诗,黄明宇,等 .燃料电池供氢系统的研究进展[J].现代化工,2018,38(1):35-39. |
WANG B, SHI C S, HUANG M Y,et al .Research progress of hydrogen supply system in fuel cells[J].Modern Chemical Industry,2018,38(1):35-39. | |
45 | 焦杰,张幽彤,孙立清,等 .燃料电池供氢组合阀仿真与拓扑优化研究[J].现代化工,2018,38(11):221-225. |
JIAO J, ZHANG Y T, SUN L Q,et al .Simulation and topology optimization for hydrogen supply combination valves in fuel cell[J].Modern Chemical Industry,2018,38(11):221-225. | |
46 | 张志新,王春鹏,郑水英,等 .燃料电池汽车高压供氢组合阀研究综述[J].装备制造技术,2019(11):1-6. |
ZHANG Z X, WANG C P, ZHENG S Y,et al .Review of high pressure hydrogen supply combined valves for fuel cell[J].Equipment Manufacturing Technology,2019(11):1-6. | |
47 | 任圣哲,张明俊,刘焕萍,等 .一种车载氢系统多功能组合阀:CN213026210U[P].2021-04-20. doi:10.3390/s23104589 |
REN S Z, ZHANG M J, LIU H P,et al .Multifunctional combination valve of vehicle-mounted hydrogen system:CN213026210U[P].2021-04-20. doi:10.3390/s23104589 | |
48 | 钱锦远,于龙杰,盛侃,等 .一种具有流量调节与稳压功能的供氢组合阀:CN114688324A[P].2022-07-01. |
QIAN J Y, YU L J, SHENG K,et al .Hydrogen supply combination valve with flow regulation and pressure stabilization functions:CN114688324A[P].2022-07-01. | |
49 | 侯松峰,王献岭,史新芳 .减压阀低温密封性能优化研究[J].河南科技,2022(21):40-44. |
HOU S F, WANG X L, SHI X F .Study on optimization of low temperature sealing performance of pressure reducing valve[J].Henan Science and Technology,2022(21):40-44. | |
50 | CHEN F Q, ZHANG M, QIAN J Y,et al .Pressure analysis on two-step high pressure reducing system for hydrogen fuel cell electric vehicle[J].International Journal of Hydrogen Energy,2017,42(16):11541-11552. doi:10.1016/j.ijhydene.2017.02.077 |
51 | LI B, LIU Y, LI J,et al .Investigation of a novel hydrogen depressurization structure constituted by an orifice plate with Tesla-type channels[J].Materials,2022,15(14):4918. doi:10.3390/ma15144918 |
52 | CHEN F Q, JIN Z J,Effects of perforated plate on hydrogen flow in L-shaped high pressure reducing valve[J].International Journal of Hydrogen Energy,2023,48(5):1956-1967. doi:10.1016/j.ijhydene.2022.09.276 |
53 | 王剑,王浩,王庆,等 .减压阀性能试验与影响阀门可靠性因素分析[J].阀门,2024(2):204-209. doi:10.3724/j.gter.20240045 |
WANG J, WANG H, WANG Q,et al .Performance test of pressure reducing valve and analysis of influencing factors on valve reliability[J].Valve,2024(2):204-209. doi:10.3724/j.gter.20240045 | |
54 | 张一建,张清峰 .一种安全稳定的过流阀:CN219994486U[P].2023-11-10. |
ZHANG Y J, ZHANG Q F .Safe and stable overflow valve:CN219994486U[P].2023-11-10. | |
55 | 赵益春,马静 .过流阀介质升力特性和弹簧刚度分析[J].石油化工设备,2015,44(5):44-48. |
ZHAO Y C, MA J .Analysis of excess flow valve liquid lift characteristic and spring rate[J].Petro-Chemical Equipment,2015,44(5):44-48. | |
56 | 史娜飞 .弹簧式大口径过流阀设计[J].阀门,2016,8(3):7-8. |
SHI N F .Design of spring type large diameter overflow valve[J].Valve,2016,8(3):7-8. | |
57 | 李鹏,张兆东 .关于带过流阀的紧急切断阀改进探讨[J].化工装备技术,2021,42(5):46-48. |
LI P, ZHANG Z D .Discussion on improvement of emergency shut-off valve with overflow valve[J].Chemical Equipment Technology,2021,42(5):46-48. | |
58 | SHI B, WANG F, WANG H Q,et al .Research on the planetary gear deceleration machine design of a novel rapidly-opening/closing actuator of manual valve[J].Advanced Engineering Forum,2011,21(2):519-522. |
59 | 程强,吴志军,钱勇,等 .手动换向阀的研究和设计[J].阀门,2022,14(4):291-293. |
CHENG Q, WU Z J, QIAN Y,et al .Research and design of manual directional valves [J].Valve,2022,14(4):291-293. | |
60 | 王浩,王剑,刘成林,等 .高压手动截止阀设计计算及分析[J].阀门,2024(1):8-12. |
WANG H, WANG J, LIU C L,et al .High pressure manual shut-off valve design calculation and analysis[J].Valve,2024(1):8-12. |
[1] | 张杰, 罗雪鹏. 液氢制-储-运-加关键技术发展现状及展望[J]. 发电技术, 2024, 45(5): 888-898. |
[2] | 成明, 项阳阳, 杨光伟, 周强, 李军. H级燃气轮机掺氢发电技术应用现状及关键问题分析[J]. 发电技术, 2024, 45(5): 814-825. |
[3] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[4] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[5] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[6] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[7] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[8] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[9] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[10] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[11] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[12] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[13] | 朱凯, 张艳红. “双碳”形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72. |
[14] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||