发电技术 ›› 2024, Vol. 45 ›› Issue (5): 814-825.DOI: 10.12096/j.2096-4528.pgt.24106
• 燃气轮机发电技术 • 上一篇
成明1, 项阳阳2, 杨光伟2, 周强1, 李军3
收稿日期:
2024-06-07
修回日期:
2024-07-26
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Ming CHENG1, Yangyang XIANG2, Guangwei YANG2, Qiang ZHOU1, Jun LI3
Received:
2024-06-07
Revised:
2024-07-26
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 作为新型电力系统的重要支撑,燃氢燃气轮机有助于降低碳排放,有利于电网调峰,是全球未来战略性新兴产业科技创新领域的焦点。燃气轮机掺氢发电技术从示范走向商业化面临诸多关键问题,亟待解决。 方法 以H级燃气轮机为研究对象,介绍了国内外燃气轮机掺氢发电的战略规划和示范项目,对比了主要燃气轮机厂商H级燃气轮机的技术路线。从氢气来源、系统改造、排放影响以及掺氢发电成本4个方面对未来燃气轮机掺氢发电技术的规模化应用进行分析并提出建议。 结果 可再生能源电解水制氢将是燃气轮机掺氢发电的主要氢气来源;开发适配掺氢不稳定燃烧的新型干式低氮氧化物燃烧器将是未来掺氢燃气轮机系统改造的重点方向;掺氢比例越高,CO2减排量越大,但NO x 排放量呈上升趋势,并有超标风险;未来掺氢发电成本可降至天然气发电成本的同等水平。 结论 随着大规模可再生能源制氢成本的降低、碳税的实施以及掺氢发电技术的成熟,燃气轮机掺氢发电将逐步进入规模化应用。
中图分类号:
成明, 项阳阳, 杨光伟, 周强, 李军. H级燃气轮机掺氢发电技术应用现状及关键问题分析[J]. 发电技术, 2024, 45(5): 814-825.
Ming CHENG, Yangyang XIANG, Guangwei YANG, Qiang ZHOU, Jun LI. Analysis of Application Status and Key Issues of Hydrogen Blending Power Generation Technology for H-class Gas Turbine[J]. Power Generation Technology, 2024, 45(5): 814-825.
厂商 | 燃机型号 | 频率/Hz | 燃烧器类型 | 掺氢能力 (体积分数/%) |
---|---|---|---|---|
通用电气 (GE) | HA系列 | 50/60 | DLN 2.6e | 50(试验) 100(目标) |
西门子 (Siemens) | STG5-9000HL STG6-9000HL | 50 60 | DLE | 50(试验) 100(目标) |
STG5-8000H STG6-8000H | 50 60 | DLE | 30(试验) 100(目标) | |
三菱 (Mitsubishi) | M501JAC M501GAC | 50 | 预混DLN 多簇DLN | 30(试验) 100(目标) |
M701JAC M701GAC | 60 | 预混DLN 多簇DLN | 30(试验) 100(目标) |
表1 H级燃气轮机掺氢能力
Tab. 1 Hydrogen blending capacity of H-class gas turbines
厂商 | 燃机型号 | 频率/Hz | 燃烧器类型 | 掺氢能力 (体积分数/%) |
---|---|---|---|---|
通用电气 (GE) | HA系列 | 50/60 | DLN 2.6e | 50(试验) 100(目标) |
西门子 (Siemens) | STG5-9000HL STG6-9000HL | 50 60 | DLE | 50(试验) 100(目标) |
STG5-8000H STG6-8000H | 50 60 | DLE | 30(试验) 100(目标) | |
三菱 (Mitsubishi) | M501JAC M501GAC | 50 | 预混DLN 多簇DLN | 30(试验) 100(目标) |
M701JAC M701GAC | 60 | 预混DLN 多簇DLN | 30(试验) 100(目标) |
1 | 国家发展和改革委员会,国家能源局 .氢能产业发展中长期规划(2021—2035年)[EB/OL].(2022-03-24)[2024-02-18].. |
National Development and Reform Commission,National Energy Administration .Medium and long term plan for hydrogen energy industry development (2021-2035)[EB/OL].(2022-03-24)[2024-02-18].. | |
2 | 李永毅,王子晗,张磊,等 .风-光-氢-燃气轮机一体化氢电耦合系统容量配置优化[J/OL].中国电机工程学报,1-13[2024-05-22]. . |
LI Y Y, WANG Z H, ZHANG L,et al .Capacity allocation optimization of integrated hydrogen-electric coupling system of wind-solar-hydrogen-gas turbine[J/OL].Proceedings of the CSEE,1-13[2024-05-22]. . | |
3 | 李建林,李光辉,马速良,等 .氢能储运技术现状及其在电力系统中的典型应用[J].现代电力,2021,38(5):535-545. |
LI J L, LI G H, MA S L,et al .An overview on hydrogen energy storage and transportation technology and its typical application in power system[J].Modern Electric Power,2021,38(5):535-545. | |
4 | 顾玖,王晨磊,解大 .电力市场环境下的电-氢一体化站优化运行[J].电力科学与技术学报,2022,37(1):130-139. |
GU J, WANG C L, XIE D . Research on optimal operation of electricity-hydrogen integrated station in electricity market environment[J]. Journal of Electric Power Science and Technology,2022,37(1):130-139. | |
5 | 孙菲 .“双碳”目标下掺氢燃气发电的现状与思考[J].当代石油石化,2023,31(2):40-44. |
SUN F .Current situation and thinking of hydrogen blending in gas power generation under “dual carbon” goals[J].Petroleum & Petrochemical Today,2023,31(2):40-44. | |
6 | WIATROS M, FULGHUM N, JONES D,et al .Global electricity review 2024[R].London:Ember,2024. |
7 | 陈晓利,陈希叶,邱朋华,等 .添加H2对9F级燃气-蒸汽联合循环机组效率的影响[J].热能动力工程,2022,37(9):12-21. |
CHEN X L, CHEN X Y, QIU P H,et al .Effect of hydrogen addition on the efficiency of 9F class gas-steam combined cycle unit[J].Journal of Engineering for Thermal Energy and Power,2022,37(9):12-21. | |
8 | BAINS P, BENNETT S, COLLINA L,et al .Global hydrogen review 2023[R].Paris:International Energy Agency,2023. doi:10.1787/cb2635f6-en |
9 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under “double carbon” circumstance[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
10 | 雷超,李韬 . 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI T . Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
11 | SATYAPAL S, RUSTAGI N, GREEN T,et al .U.S. national clean hydrogen strategy and roadmap[R].Washington:Department of Energy,2023. doi:10.1557/s43577-023-00574-9 |
12 | Commission European .A hydrogen strategy for a climate-neutral Europe[EB/OL].(2020-08-07)[2024-03-18].. |
13 | HYCAP .Germany plans new hydrogen-ready gas-fired power plants,highlightingU.K. opportunities[EB/OL].(2023-03-12)[2024-05-28].. |
14 | MENSKI H,ABE Y, TAKAMATSU A,et al .Focus on hydrogen:Japan’s energy strategy for hydrogen and ammonia[R].London:Clifford Chance,2022. |
15 | Power Mitsubishi .Mitsubishi power successfully operates an advanced class gas turbine with 30% hydrogen fuel co-firing at grid-connected T-Point 2[EB/OL].(2023-11-30)[2024-02-18].. |
16 | 孙大陆,闫玮祎 .天然气掺氢发电发展现状及其全产业链建设研究[J].中国海上油气,2023,35(4):189-197. |
SUN D L, YAN W Y .Research on hydrogen-doped natural gas power generation development status and its industrial chain construction[J].China Offshore Oil and Gas,2023,35(4):189-197. | |
17 | BOTHIEN M, BREUHAUS P, GRIEBEL P,et al .Hydrogen gas turbines[R].Brussels:ENT Global,2020. |
18 | WEBB B M, HARPER J, STEELE R,et al .Second edition:assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future[C]//ASME Turbo Expo 2023:Turbomachinery Technical Conference and Exposition,Boston,Massachusetts,USA:ASME,2023:1-12. doi:10.1115/gt2023-103962 |
19 | 李苏辉,张归华,吴玉新 .面向未来燃气轮机的先进燃烧技术综述[J].清华大学学报(自然科学版),2021,61(12):1423-1437. |
LI S H, ZHANG G H, WU Y X .Advanced combustion technologies for future gas turbines[J].Journal of Tsinghua University (Science and Technology),2021,61(12):1423-1437. | |
20 | 通用电气 .加速天然气发电增长迈向零碳未来[R].波士顿:通用电气,2022. |
General Electric Company .Accelerating the growth of natural gas power generation towards a zero-carbon future[R].Boston:General Electric Company,2022. | |
21 | A literature review of hydrogen and natural gas turbines:current state of the art with regard to performance and NO x control[R].Pittsburgh:National Energy Technology Laboratory,2022. doi:10.1016/j.ijhydene.2022.04.293 |
22 | BOHAN K, KLAPDOR E, PRADE B .Hydrogen power with Siemens gas turbines[R].Erlangen:Siemens Gas and Power GmbH & Co. KG,2020. |
23 | 吕光普,刘潇,张志浩,等 .氢燃气轮机燃烧技术研究进展[J].燃气轮机技术,2022,35(1):1-15. |
LV G P, LIU X, ZHANG Z H,et al .Research progress of combustion technology in hydrogen gas turbine[J].Gas Turbine Technology,2022,35(1):1-15. | |
24 | MASAKAZU N, TOMO K, HIDEFUMI A,et al .Hydrogen-fired gas turbine targeting realization of CO2-free society[J].Mitsubishi Heavy Industries Technical Review,2018,55(4):1-7. |
25 | 赵钦新,王宗一,邓世丰,等 .氢气燃烧技术及其进展[J].科学技术与工程,2022,22(36):15870-15880. |
ZHAO Q X, WANG Z Y, DENG S F,et al .Hydrogen combustion technology and progress[J].Science Technology and Engineering,2022,22(36):15870-15880. | |
26 | CAMPBELL R .Hydrogen in electricity’s future[R].Washington:Congressional Research Service,2020. |
27 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
28 | 甘满光,张力为,李小春,等 .欧洲CCUS技术发展现状及对我国的启示[J].热力发电,2023,52(4):1-13. |
GAN M G, ZHANG L W, LI X C,et al .Development status of CCUS technology in Europe and the enlightenment to China[J].Thermal Power Generation,2023,52(4):1-13. | |
29 | 滕越,赵骞,袁铁江,等 .绿电-氢能-多域应用耦合网络关键技术现状及展望[J].发电技术,2023,44(3):318-330. |
TENG Y, ZHAO Q, YUAN T J,et al .Key technology status and outlook for green electricity-hydrogen energy-multi-domain applications coupled network[J].Power Generation Technology,2023,44(3):318-330. | |
30 | 仲冰,张学秀,张博,等 .我国天然气掺氢产业发展研究[J].中国工程科学,2022,24(3):100-107. doi:10.15302/j-sscae-2022.03.011 |
ZHONG B, ZHANG X X, ZHANG B,et al .Industrial development of hydrogen blending in natural gas pipelines in China[J].Strategic Study of CAE,2022,24(3):100-107. doi:10.15302/j-sscae-2022.03.011 | |
31 | 兰宇,龙妍,张哲豪,等 .可再生能源制氢跨省供应的技术经济可行性研究[J].发电技术,2023,44(4):473-483. |
LAN Y, LONG Y, ZHANG Z H,et al .Technical and economic feasibility of inter-provincial supply of renewable energy hydrogen production[J].Power Generation Technology,2023,44(4):473-483. | |
32 | 王士博,孔令国,蔡国伟,等 .电力系统氢储能关键应用技术现状、挑战及展望[J].中国电机工程学报,2023,43(17):6660-6680. |
WANG S B, KONG L G, CAI G W,et al .Current status,challenges and prospects of key application technologies for hydrogen storage in power system[J].Proceedings of the CSEE,2023,43(17):6660-6680. | |
33 | 陈伊宇,龙礼文,黄泰明,等 .天然气掺氢燃烧技术研究进展[J].油气储运,2023,42(8):872-881. |
CHEN Y Y, LONG L W, HUANG T M,et al .Research progress in hydrogen-doped natural gas combustion technology[J].Oil & Gas Storage and Transportation,2023,42(8):872-881. | |
34 | 于子龙,张立业,宁晨,等 .天然气掺氢管道输运及终端应用[J].力学与实践,2022,44(3):491-502. |
YU Z L, ZHANG L Y, NING C,et al .Natural gas hydrogen mixing pipeline transportation and terminal application[J].Mechanics in Engineering,2022,44(3):491-502. | |
35 | 喻偌洢 .天然气如何顺利掺氢?记者探访我国首座城镇燃气掺氢综合实验平台[EB/OL].(2024-01-11)[2024-05-28].. |
YU R Y .How can hydrogen be successfully blended into natural gas? Reporter visits China’s first comprehensive experimental platform for blending hydrogen into urban gas[EB/OL].(2024-01-11)[2024-05-28].. | |
36 | GUL T, TURK D, BENNETT S,et al .The future of hydrogen[R].Paris:International Energy Agency,2019. doi:10.1787/1e0514c4-en |
37 | GOLDMEER J .Power to gas:hydrogen for power generation[R].Boston:General Electric Company,2019 |
38 | 曹冬惠,杜冬梅,何青 .氢储能安全及其检测技术综述[J].发电技术,2023,44(4):431-442. |
CAO D H, DU D M, HE Q .Summary of hydrogen energy storage safety and its detection technology[J].Power Generation Technology,2023,44(4):431-442. | |
39 | PAMBUDI N A, ITAOKA K, KUROSAWA A,et al .Impact of hydrogen fuel for CO2 emission reduction in power generation sector in Japan[J].Energy Procedia,2017,105:3075-3082. doi:10.1016/j.egypro.2017.03.642 |
40 | Parliament European .EU taxonomy:delegated acts on climate,and nuclear and gas[EB/OL].(2022-06-30)[2024-02-18].. |
41 | GOLDMEER J, CATILLAZ J, BENWAY J,et al .Hydrogen for power generation[R].Boston:General Electric Company,2022. |
42 | MOHAMMAD A N, MORTEZA F A, MOHAMED S,et al .Utilization of hydrogen in gas turbines:a comprehensive review[J].International Journal of Low-Carbon Technologies,2022:513-519. doi:10.1093/ijlct/ctac025 |
43 | KURZ R, COWELL L, TARVER T,et al .Hydrogen in natural gas-combustion and compression[R].Banff:Solar Turbines Incorporated,2019. |
44 | 耿卅捷,潘禾吉田,杨欢,等 .燃气轮机天然气掺氢燃烧及排放特性数值模拟研究[J].西安交通大学学报,2022,56(12):1-11. |
GENG S J, PAN H J T, YANG H,et al .Numerical study on influence of H2 blending on combustion and emission characteristics of gas turbine[J].Journal of Xi’an Jiaotong University,2022,56(12):1-11. | |
45 | 李祥晟,郭菡,郁鸿飞,等 .掺氢对燃气轮机燃烧室燃烧和排放性能的影响研究[J].西安交通大学学报,2022,56(6):9-16. |
LI X S, GUO H, YU H F,et al .Study on combustion and emission performance of hydrogen fuel gas turbine combustor[J].Journal of Xi’an Jiaotong University,2022,56(6):9-16. | |
46 | Council Hydrogen,McKinsey & Company .Hydrogen for net-zero[R].Brussels:Hydrogen Council,2021. |
47 | LORENCZIK S, KEPPLER J, FRASER P,et al .Projected costs of generating electricity[R].Paris:International Energy Agency and Nuclear Energy Agency,2020. doi:10.1787/a6002f3b-en |
48 | Bank World .State and Trends of Carbon Pricing 2023[R].Washington:World Bank,2023. doi:10.1596/39796 |
[1] | 邓飞龙, 叶垚, 李阳, 王巧丽, 张俊霞. CO2气氛下杜氏盐藻热解特性的数值研究[J]. 发电技术, 2024, 45(1): 113-119. |
[2] | 张安安, 周奇, 李茜, 丁宁, 杨超, 马岩. “双碳”目标下火电厂CO2计量技术研究现状与展望[J]. 发电技术, 2024, 45(1): 51-61. |
[3] | 刘含笑, 罗水源, 刘小伟. 工业烟气CO2的排放特征、测试及捕集技术研究[J]. 发电技术, 2024, 45(1): 62-68. |
[4] | 汪丽, 张欢, 叶舣, 赵兴雷. N-氨乙基哌嗪与甘氨酸钠CO2吸收剂配方研究[J]. 发电技术, 2023, 44(5): 674-684. |
[5] | 刘含笑. 双碳背景下电除尘器的节能减碳分析[J]. 发电技术, 2023, 44(5): 738-744. |
[6] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[7] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[8] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[9] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[10] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[11] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[12] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[13] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[14] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[15] | 彭家琪, 肖海平, 董竹雨, 孙保民, 白翎, 孙志春. 基于数据驱动的NO x 稳定性评价[J]. 发电技术, 2023, 44(2): 163-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||