发电技术 ›› 2024, Vol. 45 ›› Issue (5): 888-898.DOI: 10.12096/j.2096-4528.pgt.24019
• 新能源 • 上一篇
张杰, 罗雪鹏
收稿日期:
2024-01-25
修回日期:
2024-02-19
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Jie ZHANG, Xuepeng LUO
Received:
2024-01-25
Revised:
2024-02-19
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 液态储运是实现氢气大规模、远距离储运,保证氢能规模化应用的有效途径之一。目前,我国针对液氢制备、储运及加注领域的研究相对较少,为此,对该领域关键技术发展现状进行了分析。 方法 对比了高压气态、液态及固态储氢技术的优缺点;综述了液氢制备过程中的主要液化方法、液氢储存绝热技术与关键材料;分析了不同液氢运输方式与装备的特点;梳理了液氢加氢站建设情况,并对比了液氢加注技术;阐述了液氢主要应用领域和产业化模式,并对近年来我国液氢储运专利技术进行了统计分析。 结论 提出了我国液氢储运发展面临的“卡脖子”难点及亟需技术攻关的方向。研究结果可为液氢关键技术的研究与装备的研制提供参考。
中图分类号:
张杰, 罗雪鹏. 液氢制-储-运-加关键技术发展现状及展望[J]. 发电技术, 2024, 45(5): 888-898.
Jie ZHANG, Xuepeng LUO. Development Status and Prospect of Key Technologies for Liquid Hydrogen Production-Storage-Transportation-Refueling[J]. Power Generation Technology, 2024, 45(5): 888-898.
储氢系统 | 储器容积/L | 总质量/kg | 工作压力/kPa |
---|---|---|---|
高压储氢 | 10 | 17 | 0~10 000 |
合金固态储氢 | 1.0 | 6.5 | 5~3 000 |
液化储氢 | 1.3 | 4.0 | 100 |
表1 储氢系统比较
Tab. 1 Comparison of hydrogen storage systems
储氢系统 | 储器容积/L | 总质量/kg | 工作压力/kPa |
---|---|---|---|
高压储氢 | 10 | 17 | 0~10 000 |
合金固态储氢 | 1.0 | 6.5 | 5~3 000 |
液化储氢 | 1.3 | 4.0 | 100 |
特征点 | 参数 | 数值 |
---|---|---|
三相点(气液固共存) | 温度/K | 13.8 |
压力/kPa | 7.20 | |
凝固点 | 温度/K | 13.99 |
标准沸点 | 温度/K | 20.39 |
液体密度/(kg/m3) | 70.96 | |
蒸汽密度/(kg/m3) | 1.33 | |
临界点(液化的临界状态) | 温度/K | 33.19 |
压力/MPa | 1.31 | |
密度/(kg/m3) | 30.12 |
表2 液氢特性
Tab. 2 Liquid hydrogen properties
特征点 | 参数 | 数值 |
---|---|---|
三相点(气液固共存) | 温度/K | 13.8 |
压力/kPa | 7.20 | |
凝固点 | 温度/K | 13.99 |
标准沸点 | 温度/K | 20.39 |
液体密度/(kg/m3) | 70.96 | |
蒸汽密度/(kg/m3) | 1.33 | |
临界点(液化的临界状态) | 温度/K | 33.19 |
压力/MPa | 1.31 | |
密度/(kg/m3) | 30.12 |
类型 | 条件 | 特点 | |
---|---|---|---|
常规加注技术 | 常温常压加注 | 常温常压 | 加注速度慢,且需要占用较大的空间 |
高压加注 | 高压 | 加注速度快,但需要消耗大量的能量来压缩液氢 | |
低温加注 | 低温 | 加注速度快,但需要消耗大量的能量来维持低温 | |
新型加注技术 | 蒸发冷却加注 | 将液氢蒸发,并利用其蒸发过程中吸收的热量来冷却氢气 | 加注速度快,但需要消耗大量的能量 |
压力波加注 | 利用压力波将液氢推动到加注口 | 加注速度快,但需要解决压力波对加注设备的影响 | |
液氢空气混合加注 | 将液氢与空气混合后加注 | 可减少液氢的泄放和溢出,但需要解决混合比例和安全性等问题 |
表3 加注技术对比
Tab. 3 Comparison of filling technologies
类型 | 条件 | 特点 | |
---|---|---|---|
常规加注技术 | 常温常压加注 | 常温常压 | 加注速度慢,且需要占用较大的空间 |
高压加注 | 高压 | 加注速度快,但需要消耗大量的能量来压缩液氢 | |
低温加注 | 低温 | 加注速度快,但需要消耗大量的能量来维持低温 | |
新型加注技术 | 蒸发冷却加注 | 将液氢蒸发,并利用其蒸发过程中吸收的热量来冷却氢气 | 加注速度快,但需要消耗大量的能量 |
压力波加注 | 利用压力波将液氢推动到加注口 | 加注速度快,但需要解决压力波对加注设备的影响 | |
液氢空气混合加注 | 将液氢与空气混合后加注 | 可减少液氢的泄放和溢出,但需要解决混合比例和安全性等问题 |
1 | 朱凯,张艳红 .“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 |
ZHU K, ZHANG Y H .Research on application of hydrogen in power industry under “double carbon” circumstance[J].Power Generation Technology,2022,43(1):65-72. doi:10.12096/j.2096-4528.pgt.21098 | |
2 | 赵北涛,刘光宇,韩东升 .考虑氢能耦合及阶梯碳交易的综合能源系统多时间尺度低碳优化调度[J].电力科学与技术学报,2023,38(3):35-46. |
ZHAO B T, LIU G Y, HAN D S .Multi-time-scale low-carbon optimal scheduling of integrated energy systems considering hydrogen energy coupling and ladder carbon trading[J].Journal of Electric Power Science and Technology,2023,38(3):35-46. | |
3 | 张驰,周骏,赵镔,等 .零碳园区电-氢混合储能系统多目标优化配置[J].电力建设,2022,43(8):1-12. doi:10.12204/j.issn.1000-7229.2022.08.001 |
ZHANG C, ZHOU J, ZHAO B,et al .Multi-objective optimal configuration of electricity-hydrogen hybrid energy storage system in zero-carbon park[J].Electric Power Construction,2022,43(8):1-12. doi:10.12204/j.issn.1000-7229.2022.08.001 | |
4 | 贺旭辉,王灿,李欣然,等 .计及CLHG-SOFC碳捕集的多能源系统低碳优化调度[J].智慧电力,2023,51(5):57-64. |
HE X H, WANG C, LI X R,et al .Low carbon optimal scheduling of multi-energy system considering CLHG-SOFC carbon capture[J].Smart Power,2023,51(5):57-64. | |
5 | 殷卓成,杨高,刘怀,等 .氢能储运关键技术研究现状及前景分析[J].现代化工,2021,41(11):53-57. |
YIN Z C, YANG G, LIU H,et al .Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J].Modern Chemical Industry,2021,41(11):53-57. | |
6 | SHAO Z, LI Y, LIU C,et al .Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation[J].Nature Communications,2020,11:591. doi:10.1038/s41467-020-14380-3 |
7 | 张轩,樊昕晔,王凯 .传统油企氢能业务发展全产业链探讨[J].现代化工,2021,41(7):9-13. |
ZHANG X, FAN X Y, WANG K .Exploration on whole industrial chain for traditional petrochemical enterprises to develop hydrogen energy business[J].Modern Chemical Industry,2021,41(7):9-13. | |
8 | 张杰,蒋文杰,杨锐,等 .70 MPa碳纤维缠绕储氢气瓶结构设计与力学性能研究[J].压力容器,2023,40(3):28-37. |
ZHANG J, JIANG W J, YANG R,et al .Study on structural design and mechanical properties of 70 MPa carbon fiber wound hydrogen storage cylinder[J].Pressure Vessel Technology,2023,40(3):28-37. | |
9 | 阮景昕,王跃社,张俊峰,等 .基于氢储能的风光氢能源系统能质转换优化策略[J].工程热物理学报,2023,44(2):413-421. |
RUAN J X, WANG Y S, ZHANG J F,et al .Energy-mass conersion optimization strategy of wind-solar-hydrogen energy system based on hydrogen energy storage[J].Journal of Engineering Thermophysics,2023,44(2):413-421. | |
10 | 刘宇轩 .氢能源及其应用现状概述[J].节能,2022,41(10):78-80. |
LIU Y X .An overview of hydrogen energy and its applications[J].Energy Conservation,2022,41(10):78-80. | |
11 | 刘江华 .氢能源:未来的绿色能源[J].现代化工,2006,26(S2):10-13. |
LIU J H .Hydrogen energy:future green energy[J].Modern Chemical Industry,2006,26(S2):10-13. | |
12 | FRIBERG R .A photovoltaic solar-hydrogen power plant for rural electrification in India.part 1:a general survey of technologies applicable within the solar-hydrogen concept[J].International Journal of Hydrogen Energy,1993,18(10):853-882. doi:10.1016/0360-3199(93)90140-6 |
13 | 杨余 .Ni-Cu/CCA催化剂的制备及其脱氢反应性能研究[D].湘潭:湘潭大学,2012. |
YANG Y .Preparation of Ni-Cu/CCA catalyst and its dehydrogenation performance[D].Xiangtan:Xiangtan University,2012. | |
14 | BERSTAD D O, STANG J H, NEKSÅ P .Comparison criteria for large-scale hydrogen liquefaction processes[J].International Journal of Hydrogen Energy,2009,34(3):1560-1568. doi:10.1016/j.ijhydene.2008.11.058 |
15 | 陈晓露,刘小敏,王娟,等 .液氢储运技术及标准化[J].化工进展,2021,40(9):4806-4814. |
CHEN X L, LIU X M, WANG J,et al .Technology and standardization of liquid hydrogen storage and transportation[J].Chemical Industry and Engineering Progress,2021,40(9):4806-4814. | |
16 | 张亮亮,孙庆国,高旭,等 .氢正仲转化过程的统计热力学分析[J].低温物理学报,2016,38(1):81-84. |
ZHANG L L, SUN Q G, GAO X,et al .Statistical thermodynamics analysis of hydrogen ortho-Para conversion matters[J].Chinese Journal of Low Temperature Physics,2016,38(1):81-84. | |
17 | WINTER C J, NITSCH J .Hydrogen as an energy carrier[M].Berlin,Heidelberg:Springer Berlin Heidelberg,1988:93-98. doi:10.1007/978-3-642-61561-0 |
18 | 蔡卫权,陈进富 .有机液态氢化物可逆储放氢技术进展[J].现代化工,2001,21(11):21-23. |
CAI W Q, CHEN J F .Progresses on liquid organic hydrides in hydrogen storage and transportation[J].Modern Chemical Industry,2001,21(11):21-23. | |
19 | 张振扬,妙丛,王峰,等 .规模化氢液化装置现状及未来技术路线分析[J].化工进展,2022,41(12):6261-6274. |
ZHANG Z Y, MIAO C, WANG F,et al .Analysis of present status and future technical route on large-scale hydrogen liquefaction plant[J].Chemical Industry and Engineering Progress,2022,41(12):6261-6274. | |
20 | 杨晓阳,杨昌乐 .正仲氢转化催化剂性能研究[J].化学推进剂与高分子材料,2018,16(3):79-82. |
YANG X Y, YANG C L .Study on performance of orthohydrogen-parahydrogen converting catalyst[J].Chemical Propellants & Polymeric Materials,2018,16(3):79-82. | |
21 | BELYAKOV V V, KRAKOVSKII B D, POPOV O M,et al .Low-capacity hydrogen liquefier with a helium cycle[J].Chemical and Petroleum Engineering,2002,38(3):150-153. doi:10.1023/a:1019692103797 |
22 | 陈双涛,周楷淼,赖天伟,等 .大规模氢液化方法与装置[J].真空与低温,2020,26(3):173-178. doi:10.3969/j.issn.1006-7086.2020.03.001 |
CHEN S T, ZHOU K M, LAI T W,et al .Large-scale hydrogen liquefaction methods and devices[J].Vacuum and Cryogenics,2020,26(3):173-178. doi:10.3969/j.issn.1006-7086.2020.03.001 | |
23 | AASADNIA M, MEHRPOOYA M .Large-scale liquid hydrogen production methods and approaches:a review[J].Applied Energy,2018,212:57-83. doi:10.1016/j.apenergy.2017.12.033 |
24 | OHLIG K, DECKER L .The latest developments and outlook for hydrogen liquefaction technology[C]//AIP Conference Proceedings.Anchorage,Alaska,USA:AIP Publishing LLC,2014,1573:1311-1317. doi:10.1063/1.4860858 |
25 | KRASAE-IN S, STANG J H, NEKSA P .Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J].International Journal of Hydrogen Energy,2010,35(10):4524-4533. doi:10.1016/j.ijhydene.2010.02.109 |
26 | 唐璐,邱利民,姚蕾,等 .氢液化系统的研究进展与展望[J].制冷学报,2011,32(6):1-8. |
TANG L, QIU L M, YAO L,et al .Review on research and developments of hydrogen liquefaction systems[J].Journal of Refrigeration,2011,32(6):1-8. | |
27 | 殷靓,巨永林 .氢液化流程设计和优化方法研究进展[J].制冷学报,2020,41(3):1-10. doi:10.1007/s11708-019-0657-4 |
YIN L, JU Y L .Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J].Journal of Refrigeration,2020,41(3):1-10. doi:10.1007/s11708-019-0657-4 | |
28 | 曹学文,杨健,边江,等 .新型双压Linde-Hampson氢液化工艺设计与分析[J].化工进展,2021,40(12):6663-6669. |
CAO X W, YANG J, BIAN J,et al .Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J].Chemical Industry and Engineering Progress,2021,40(12):6663-6669. | |
29 | 吕翠,王金阵,朱伟平,等 .氢液化技术研究进展及能耗分析[J].低温与超导,2019,47(7):11-18. doi:10.16711/j.1001-7100.2019.07.003 |
LV C, WANG J Z, ZHU W P,et al .Research progress and energy consumption analysis of hydrogen liquefaction technology[J].Cryogenics & Superconductivity,2019,47(7):11-18. doi:10.16711/j.1001-7100.2019.07.003 | |
30 | 唐璐 .基于液氮预冷的氢液化流程设计及系统模拟[D].杭州:浙江大学,2012. |
TANG L .Design and system simulation of hydrogen liquefaction process based on liquid nitrogen precooling[D].Hangzhou:Zhejiang University,2012. | |
31 | TIMMERHAUS K D, FLYNN T M .Cryogenic Process Engineering[M].Boston,MA:Springer US,1989:67-74. doi:10.1007/978-1-4684-8756-5 |
32 | BRACHA M, LORENZ G, PATZELT A,et al .Large-scale hydrogen liquefaction in Germany[J].International Journal of Hydrogen Energy,1994,19(1):53-59. doi:10.1016/0360-3199(94)90177-5 |
33 | 魏晓雯 .基于克劳德循环的氢液化流程模拟研究[D].北京:中国石油大学(北京),2021. |
WEI X W .Simulation of hydrogen liquefaction process based on Claude cycle[D].Beijing:China University of Petroleum (Beijing),2021. | |
34 | NANDI T, SARANGI S .Performance and optimization of hydrogen liquefaction cycles[J].International Journal of Hydrogen Energy,1993,18(2):131-139. doi:10.1016/0360-3199(93)90199-k |
35 | BARRON R F .Cryogenic systems[M].2nd ed.New York:Oxford University Press,1985:87-96. |
36 | 殷靓,巨永林,王刚 .1 000 L/h氢液化装置工艺流程分析及优化[J].制冷技术,2019,39(1):39-44. |
YIN L, JU Y L, WANG G .Process analysis and optimization of 1 000 L/h hydrogen liquefaction system[J].Chinese Journal of Refrigeration Technology,2019,39(1):39-44. | |
37 | 徐烈,朱卫东,汤晓英 .低温绝热与贮运技术[M].北京:机械工业出版社,1999:39-55. |
XU L, ZHU W D, TANG X Y .Low temperature insulation and storage and transportation technology[M].Beijing:China Machine Press,1999:39-55. | |
38 | 陈崇昆 .300 m3液氢运输槽车液氢贮罐的研制[D].哈尔滨:哈尔滨工业大学,2015. |
CHEN C K .Development of liquid hydrogen storage tank for 300 m3 liquid hydrogen transport tank car[D].Harbin:Harbin Institute of Technology,2015. | |
39 | 扬帆,张超,张博超,等 .大型液氢储罐内罐材料研究与应用进展[J].太阳能学报,2023,44(10):557-563. |
YANG F, ZHANG C, ZHANG B C,et al .Research and application progress of inner tank materials for large liquid hydrogen storage tanks[J].Acta Energiae Solaris Sinica,2023,44(10):557-563. | |
40 | 雷超,李韬 .碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 |
LEI C, LI T .Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J].Power Generation Technology,2021,42(2):207-217. doi:10.12096/j.2096-4528.pgt.20015 | |
41 | 孙延寿,李旭航,王云飞,等 .氢气储运技术发展综述[J].山东化工,2021,50(19):96-98. |
SUN Y S, LI X H, WANG Y F,et al .Summary of hydrogen storage and transportation technology development[J].Shandong Chemical Industry,2021,50(19):96-98. | |
42 | 朱琴君,祝俊宗 .国内液氢加氢站的发展与前景[J].煤气与热力,2020,40(7):15-19. |
ZHU Q J, ZHU J Z .Development and prospect of liquid hydrogen refueling stations in China[J].Gas & Heat,2020,40(7):15-19. | |
43 | 邵雪,李承霖,胡康,等 .离心式液氢泵的动力特性与传热特性分析[J].液压与气动,2022,46(8):162-170. |
SHAO X, LI C L, HU K,et al .Analysis on dynamic and heat transfer characteristics of centrifugal liquid hydrogen pump[J].Chinese Hydraulics & Pneumatics,2022,46(8):162-170. | |
44 | 韦炜,何志龙,邢子文,等 .高压液氢泵研究进展[J].流体机械,2022,50(7):79-84. |
WEI W, HE Z L, XING Z W,et al .Overview of advances in the research of high-pressure liquid hydrogen pump[J].Fluid Machinery,2022,50(7):79-84. | |
45 | 曲小 .欧洲加速氢能飞机研发与布局[J].大飞机,2022(5):38-41. doi:10.3969/j.issn.2095-3399.2022.05.011 |
QU X .R&D and layout of accelerated hydrogen energy aircraft in Europe[J].Jetliner,2022(5):38-41. doi:10.3969/j.issn.2095-3399.2022.05.011 | |
46 | 张扬军,彭杰,钱煜平,等 .氢能航空的关键技术与挑战[J].航空动力,2021(1):20-23. |
ZHANG Y J, PENG J, QIAN Y P,et al .Key technologies and challenges of hydrogen powered aviation[J].Aerospace Power,2021(1):20-23. | |
47 | 曹冬惠,杜冬梅,何青 .氢储能安全及其检测技术综述[J].发电技术,2023,44(4):431-442. |
CAO D H, DU D M, HE Q .Summary of hydrogen energy storage safety and its detection technology[J].Power Generation Technology,2023,44(4):431-442. | |
48 | 王登,吕洪,沈亚皓,等 .液氢安全研究现状[J].浙江电力,2023,42(5):3-10. |
WANG D,LYU H, SHEN Y H,et al .Status quo of liquid hydrogen safety research[J].Zhejiang Electric Power,2023,42(5):3-10. | |
49 | 闫晓,闫军芬,陈珂,等 .氢泄漏与扩散研究及加氢站安全防护[J].能源与节能,2022(7):6-10. doi:10.3969/j.issn.2095-0802.2022.07.002 |
YAN X, YAN J F, CHEN K,et al .Research on hydrogen leakage and diffusion and safety protection of hydrogenation station[J].Energy and Energy Conservation,2022(7):6-10. doi:10.3969/j.issn.2095-0802.2022.07.002 | |
50 | 陆师禹 .氢能发电的应用前景探究[J].科技风,2018(22):203. |
LU S Y .Exploration on the application prospect of hydrogen power generation[J].Technology Wind,2018(22):203. | |
51 | 张震,解辉,苏嘉南,等 .“碳中和” 背景下的液氢发展之路探讨[J].天然气工业,2022,42(4):187-193. |
ZHANG Z, XIE H, SU J N,et al .Development of liquid hydrogen under the background of carbon neutrality[J].Natural Gas Industry,2022,42(4):187-193. |
[1] | 成明, 项阳阳, 杨光伟, 周强, 李军. H级燃气轮机掺氢发电技术应用现状及关键问题分析[J]. 发电技术, 2024, 45(5): 814-825. |
[2] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[3] | 孔令国, 宫健, 杨士慧, 倪德富, 王士博, 刘闯. DC/DC隔离型制氢电源发展现状与趋势[J]. 发电技术, 2023, 44(4): 443-451. |
[4] | 曹冬惠, 杜冬梅, 何青. 氢储能安全及其检测技术综述[J]. 发电技术, 2023, 44(4): 431-442. |
[5] | 胡轶坤, 曹军文, 张文强, 于波, 王建晨, 陈靖. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3): 361-372. |
[6] | 赵连鹏, 张振扬, 安刚, 杨申音. 混合冷剂氢液化技术研究进展[J]. 发电技术, 2023, 44(3): 331-339. |
[7] | 滕越, 赵骞, 袁铁江, 陈国宏. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3): 318-330. |
[8] | 张春雁, 窦真兰, 王俊, 朱亮亮, 孙晓彤, 李根蒂. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3): 305-317. |
[9] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[10] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[11] | 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2): 198-206. |
[12] | 朱凯, 张艳红. “双碳”形势下电力行业氢能应用研究[J]. 发电技术, 2022, 43(1): 65-72. |
[13] | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||