Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 550-556.DOI: 10.12096/j.2096-4528.pgt.22160
• Power Generation and Environmental Protection • Previous Articles Next Articles
Jingcheng SU1, Zhiqiang WANG2, Jiangjiang QU1, Kai ZHANG2
Received:
2022-09-24
Published:
2023-08-31
Online:
2023-08-29
Contact:
Zhiqiang WANG
Supported by:
CLC Number:
Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression[J]. Power Generation Technology, 2023, 44(4): 550-556.
变量符号 | 变量名称 | 变量符号 | 变量名称 |
---|---|---|---|
X1 | 锅炉机组负荷 | X11 | 吸收塔原烟气SO2浓度 |
X2 | SCR反应器入口NO x 浓度 | X12 | 吸收塔原烟气O2浓度 |
X3 | SCR反应器入口O2浓度 | X13 | 吸收塔净烟气SO2浓度折算值 |
X4 | SCR反应器出口NO x 浓度 | X14 | SCR反应器入口温度 |
X5 | SCR反应器出口O2浓度 | X15 | SCR反应器出口温度 |
X6 | SCR反应器出口烟气流量 | X16 | 一次风机入口温度 |
X7 | 尿素溶液流量 | X17 | 空预器出口热一次风温度 |
X8 | 吸收塔净烟气NO x 浓度折算值 | X18 | 空预器出口热二次风温度 |
X9 | 吸收塔净烟气O2浓度 | Y1 | 空预器进出口压差 |
X10 | 空预器出口烟气温度 |
Tab. 1 Dataset variables
变量符号 | 变量名称 | 变量符号 | 变量名称 |
---|---|---|---|
X1 | 锅炉机组负荷 | X11 | 吸收塔原烟气SO2浓度 |
X2 | SCR反应器入口NO x 浓度 | X12 | 吸收塔原烟气O2浓度 |
X3 | SCR反应器入口O2浓度 | X13 | 吸收塔净烟气SO2浓度折算值 |
X4 | SCR反应器出口NO x 浓度 | X14 | SCR反应器入口温度 |
X5 | SCR反应器出口O2浓度 | X15 | SCR反应器出口温度 |
X6 | SCR反应器出口烟气流量 | X16 | 一次风机入口温度 |
X7 | 尿素溶液流量 | X17 | 空预器出口热一次风温度 |
X8 | 吸收塔净烟气NO x 浓度折算值 | X18 | 空预器出口热二次风温度 |
X9 | 吸收塔净烟气O2浓度 | Y1 | 空预器进出口压差 |
X10 | 空预器出口烟气温度 |
评价指标 | BP神经网络 | SVR | PSO-BP神经网络 |
---|---|---|---|
均方误差 | 0.008 7 | 0.009 2 | 0.006 3 |
训练时间/s | 26 | 43 500 | 15 |
相关系数 | 0.988 18 | 0.923 36 | 0.987 69 |
收敛速度 | 较快 | 慢 | 最快 |
最优值 | 局部最优 | 全局最优 | 全局最优 |
Tab. 2 Evaluation indexes of three models
评价指标 | BP神经网络 | SVR | PSO-BP神经网络 |
---|---|---|---|
均方误差 | 0.008 7 | 0.009 2 | 0.006 3 |
训练时间/s | 26 | 43 500 | 15 |
相关系数 | 0.988 18 | 0.923 36 | 0.987 69 |
收敛速度 | 较快 | 慢 | 最快 |
最优值 | 局部最优 | 全局最优 | 全局最优 |
1 | 王艳红, 李勇, 刘洪宪, 等 . 基于空气预热器漏风率偏差的排烟温度影响研究[J]. 锅炉技术, 2015, 46( 5): 5- 9. doi: 10.3969/j.issn.1672-4763.2015.05.002 |
WANG Y H, LI Y, LIU H X, et al . Influence study exhaust temperature based on the air leakage rate of deviation of air preheater[J]. Boiler Technology, 2015, 46( 5): 5- 9. doi: 10.3969/j.issn.1672-4763.2015.05.002 | |
2 | 王秀红, 盛伟, 刘全山 . 电站锅炉烟气余热利用技术方案研究[J]. 发电技术, 2019, 40( 3): 276- 280. doi: 10.12096/j.2096-4528.pgt.18240 |
WANG X H, SHENG W, LIU Q S . Study on technical scheme of flue gas waste heat utilization in utility boiler[J]. Power Generation Technology, 2019, 40( 3): 276- 280. doi: 10.12096/j.2096-4528.pgt.18240 | |
3 | LIN Z, GUO C, NI P, et al . Experimental and numerical investigations into leakage behaviour of a novel prefabricated utility tunnel[J]. Tunnelling and Underground Space Technology, 2020, 104: 103529. doi: 10.1016/j.tust.2020.103529 |
4 | DU X, SHI Y, WANG X . Coupled characterization and experimental verification of heat transfer and air leakage in a quad-sectional rotary air preheater[J]. Applied Thermal Engineering, 2019, 159: 113923. doi: 10.1016/j.applthermaleng.2019.113923 |
5 | 王飞, 文贻艳, 王志伟, 等 . 回转式空气预热器的积灰在线监测研究[J]. 科技风, 2018( 26): 1- 2. |
WANG F, WEN Y Y, WANG Z W, et al . Study on on-line monitoring of dust accumulation in rotary air preheater[J]. Technology Wind, 2018( 26): 1- 2. | |
6 | 蓝晓村, 高正平, 徐治皋 . 基于烟气差压的回转式空预器积灰实时监测研究[J]. 机电信息, 2004( 19): 4- 5. |
LAN X C, GAO Z P, XU Z G . Study on real-time monitoring of dust accumulation in rotary air preheater based on flue gas differential pressure[J]. Mechanical and Electrical Information, 2004( 19): 4- 5. | |
7 | 赵明, 孙平 . 基于Elman神经网络空预器积灰监测的研究[J]. 节能技术, 2016, 34( 2): 165- 168. doi: 10.3969/j.issn.1002-6339.2016.02.017 |
ZHAO M, SUN P . Research on air pre-heater fouling monitoring based on the Elman neural network[J]. Energy Conservation Technology, 2016, 34( 2): 165- 168. doi: 10.3969/j.issn.1002-6339.2016.02.017 | |
8 | 王海燕, 骆小楠, 张翔 . 回转式空气预热器换热性能在线监测[J]. 锅炉技术, 2020, 51( 4): 1- 6. |
WANG H Y, LUO X N, ZHANG X . Online monitoring of heat transfer performance of rotary air preheaters[J]. Boiler Technology, 2020, 51( 4): 1- 6. | |
9 | WANG L, BU Y, LI D, et al . Single and multi-objective optimizations of rotary regenerative air preheater for coal-fired power plant considering the ammonium bisulfate deposition[J]. International Journal of Thermal Sciences, 2019, 136: 52- 59. doi: 10.1016/j.ijthermalsci.2018.10.005 |
10 | 张慧娥, 刘大贵, 朱婷婷, 等 . 基于相似日和动量法优化BP神经网络的光伏短期功率预测研究[J]. 智慧电力, 2021, 49( 6): 46- 52. |
ZHANG H E, LIU D G, ZHU T T, et al . Short-term PV power prediction based on BP neural network optimized by similar daily and momentum method[J]. Smart Power, 2021, 49( 6): 46- 52. | |
11 | 张凌浩, 张明, 嵇文路, 等 . 基于灰色关联理论和BP神经网络的分布式光伏电站运维数据虚拟采集方法[J]. 电力建设, 2021, 42( 1): 125- 131. doi: 10.12204/j.issn.1000-7229.2021.01.014 |
ZHANG L H, ZHANG M, JI W L, et al . Virtual acquisition method for operation data of distributed PV applying the mixture of grey relational theory and BP neural work[J]. Electric Power Construction, 2021, 42( 1): 125- 131. doi: 10.12204/j.issn.1000-7229.2021.01.014 | |
12 | 熊一, 詹智红, 柯方超, 等 . 基于改进BP神经网络的变电站检修运维成本预测[J]. 电力科学与技术学报, 2021, 36( 4): 44- 52. |
XIONG Y, ZHAN Z H, KE F C, et al . Overhaul operation and maintenance cost prediction of substation based on improved BP neural network[J]. Journal of Electric Power Science and Technology, 2021, 36( 4): 44- 52. | |
13 | 时浩, 肖海平, 刘彦鹏 . 基于BP神经网络和最小二乘支持向量机的灰熔点预测和对比[J]. 发电技术, 2022, 43( 1): 139- 146. doi: 10.12096/j.2096-4528.pgt.20003 |
SHI H, XIAO H P, LIU Y P . Prediction and comparison of ash fusion temperatures based on BP neural network and least squares support vector machine[J]. Power Generation Technology, 2022, 43( 1): 139- 146. doi: 10.12096/j.2096-4528.pgt.20003 | |
14 | 张晓萍, 张建民 . 基于BP神经网络的复合型挑坎体型参数反演研究[J]. 水利水电技术, 2022, 53( 4): 138- 147. |
ZHANG X P, ZHANG J M . BP neural network-based study on inversion of shape parameter of composite flip bucket[J]. Water Resources and Hydropower Engineering, 2022, 53( 4): 138- 147. | |
15 | WU W, WANG J, CHENG M, et al . Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks, 2011, 24( 1): 91- 98. doi: 10.1016/j.neunet.2010.09.007 |
16 | 孟安波, 蔡涌烽, 符嘉晋, 等 . 基于CSO-SVR的低压架空线路谐波损耗评估[J]. 电力工程技术, 2022, 41( 3): 202- 208. doi: 10.12158/j.2096-3203.2022.03.024 |
MENG A B, CAI Y F, FU J J, et al . Harmonic loss evaluation of low voltage overhead lines based on CSO-SVR model[J]. Electric Power Engineering Technology, 2022, 41( 3): 202- 208. doi: 10.12158/j.2096-3203.2022.03.024 | |
17 | YU W, GUAN G, LI J, et al . Claim amount forecasting and pricing of automobile insurance based on the BP neural network[J]. Complexity, 2021, 2021: 1- 17. doi: 10.1155/2021/6616121 |
18 | CHEN B, ZHOU S, LIU H, et al . A prediction model of online car-hailing demand based on K-means and SVR[J]. Journal of Physics:Conference Series, 2020, 1670( 1): 12034. doi: 10.1088/1742-6596/1670/1/012034 |
19 | LI X, LUO A, LI J, et al . Air pollutant concentration forecast based on support vector regression and quantum-behaved particle swarm optimization[J]. Environmental Modeling & Assessment, 2019, 24( 2): 205- 222. doi: 10.1007/s10666-018-9633-3 |
20 | 李鹏辉, 刘冉, 余廷芳 . 基于支持向量机和BP神经网络的燃煤锅炉NO x 排放预测[J]. 热能动力工程, 2016, 31( 10): 104- 108. |
LI P H, LIU R, YU T F . NO x emission prediction of coal-fired boiler based on support vector machine and BP neural network[J]. Thermal power engineering 2016, 31( 10): 104- 108. | |
21 | LI J Y . BP neural network optimized by PSO and its application in function approximation[J]. Advanced Materials Research, 2014, 945/949: 2413- 2416. doi: 10.4028/www.scientific.net/amr.945-949.2413 |
22 | 张冲, 荣娜 . 基于改进粒子群算法的新能源侧储能容量配置[J]. 电网与清洁能源, 2022, 38( 10): 98- 105. |
ZHANG C, RONG N . Energy storage capacity allocation of renewable energy side based on improved particle swarm optimization[J]. Power System and Clean Energy, 2022, 38( 10): 98- 105. | |
23 | YIN X, CAO F, WANG J, et al . Investigations on optimal discharge pressure in CO2 heat pumps using the GMDH and PSO-BP type neural network:part A:theoretical modeling[J]. International Journal of Refrigeration, 2019, 106: 549- 557. doi: 10.1016/j.ijrefrig.2019.04.027 |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks [J]. Power Generation Technology, 2024, 45(2): 323-330. |
[3] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[4] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[5] | Guoqin ZHAO, Maowei LAN, Yang LI, Yuanxiang ZHOU, Zhengwei JIANG, Yunhua GAN. Study on Optimization of Prediction Model of Flue Gas Oxygen Content in Thermal Power Plant Based on Least Squares Support Vector Machine [J]. Power Generation Technology, 2023, 44(4): 534-542. |
[6] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[7] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[8] | Guangde DONG, Daoming LI, Yongtao CHEN, Xing MA, Ang FU, Gang MU, Bai XIAO. Power Quality Disturbance Classification Method Based on Particle Swarm Optimization and Convolutional Neural Network [J]. Power Generation Technology, 2023, 44(1): 136-142. |
[9] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[10] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[11] | Yao XIAO, Wenze NIU, Gaosheng WEI, Liu CUI, Xiaoze DU. Review on Research Status and Developing Tendency of Solar Photovoltaic/Thermal Technology [J]. Power Generation Technology, 2022, 43(3): 392-404. |
[12] | Jun LIU, Yi DEND, Yanxi YANG, Yonggui WEI, Yanhui XUE, Wenwen SHI. Ash Accumulation State Identification for Infrared Compensation Images of Air Preheater Rotor Based on Deep Learning Method [J]. Power Generation Technology, 2022, 43(3): 510-517. |
[13] | Fuguo LIU, Ke LIU, Shouen WANG. Pareto Fronts of Mixed Coal Quality and Cost in Power Plant Based on Chance Constraints [J]. Power Generation Technology, 2022, 43(1): 160-167. |
[14] | Chunxi DAI, Ping LIANG, Deyong CHE, Haiting LIU. Study on Flow Characteristics in Honeycomb Tube Wet Electrostatic Precipitator [J]. Power Generation Technology, 2022, 43(1): 155-159. |
[15] | Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine [J]. Power Generation Technology, 2022, 43(1): 139-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||