Power Generation Technology ›› 2023, Vol. 44 ›› Issue (4): 543-549.DOI: 10.12096/j.2096-4528.pgt.22074
• Power Generation and Environmental Protection • Previous Articles Next Articles
Zhigang GAO1, Fuchun CHEN1, Jiawei WANG2, Tao WANG2, Yongsheng ZHANG2
Received:
2022-04-11
Published:
2023-08-31
Online:
2023-08-29
Contact:
Yongsheng ZHANG
CLC Number:
Zhigang GAO, Fuchun CHEN, Jiawei WANG, Tao WANG, Yongsheng ZHANG. Study on Mercury Emissions and Ash Characteristics of 600 MW Brown Coal-Fired Unit[J]. Power Generation Technology, 2023, 44(4): 543-549.
负荷/MW | 采样点位 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
319 | 370 | 354 | 133 | 96 | 50 |
450 | 398 | 389 | 140 | 102 | 53 |
550 | 403 | 395 | 142 | 106 | 53 |
Tab. 1 Temperature at each sampling point
负荷/MW | 采样点位 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
319 | 370 | 354 | 133 | 96 | 50 |
450 | 398 | 389 | 140 | 102 | 53 |
550 | 403 | 395 | 142 | 106 | 53 |
负荷/MW | 工业分析/% | 元素分析/% | 汞质量比/(ng/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | Fcad | w(C) | w(H) | w(N) | w(S) | w(O) | ||
319 | 4.74 | 37.35 | 11.53 | 46.71 | 62.51 | 4.20 | 0.69 | 0.75 | 19.46 | 64.3±12.7 |
450 | 5.30 | 34.39 | 15.42 | 45.23 | 60.20 | 4.01 | 0.85 | 0.72 | 17.91 | 58.0±5.0 |
550 | 5.45 | 35.25 | 13.61 | 45.69 | 60.85 | 4.16 | 0.85 | 0.71 | 18.69 | 45.0±3.0 |
Tab. 2 Ultimate/Proximate analysis and Hg content of coal samples
负荷/MW | 工业分析/% | 元素分析/% | 汞质量比/(ng/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Vad | Aad | Fcad | w(C) | w(H) | w(N) | w(S) | w(O) | ||
319 | 4.74 | 37.35 | 11.53 | 46.71 | 62.51 | 4.20 | 0.69 | 0.75 | 19.46 | 64.3±12.7 |
450 | 5.30 | 34.39 | 15.42 | 45.23 | 60.20 | 4.01 | 0.85 | 0.72 | 17.91 | 58.0±5.0 |
550 | 5.45 | 35.25 | 13.61 | 45.69 | 60.85 | 4.16 | 0.85 | 0.71 | 18.69 | 45.0±3.0 |
负荷/MW | 粗灰 | 细灰 | 炉渣 | 石膏 | 石灰石 | 污泥 |
---|---|---|---|---|---|---|
319 | 198.7±13.6 | 140.7±11.9 | 0.1±0.1 | 65.7±14.6 | 10.1±1.7 | 486.7±11.0 |
450 | 109.3±14.2 | 115.0±9.5 | 0.1±0.0 | 208.3±12.5 | 11.3±1.5 | — |
550 | 190.3±4.0 | 130.0±11.3 | 0.1±0.0 | 52.3±0.6 | 6.9±1.6 | — |
Tab. 3 Mercury content in solid samples
负荷/MW | 粗灰 | 细灰 | 炉渣 | 石膏 | 石灰石 | 污泥 |
---|---|---|---|---|---|---|
319 | 198.7±13.6 | 140.7±11.9 | 0.1±0.1 | 65.7±14.6 | 10.1±1.7 | 486.7±11.0 |
450 | 109.3±14.2 | 115.0±9.5 | 0.1±0.0 | 208.3±12.5 | 11.3±1.5 | — |
550 | 190.3±4.0 | 130.0±11.3 | 0.1±0.0 | 52.3±0.6 | 6.9±1.6 | — |
负荷/MW | 样品 | 飞灰成分质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | MnO2 | Fe2O3 | SrO | BaO | ||
319 | 细灰 | 1.61 | 0.63 | 13.84 | 48.13 | ND | 0.67 | 8.67 | 0.55 | 0.15 | 6.51 | 0.15 | 0.12 |
粗灰 | 1.43 | 0.76 | 13.43 | 45.14 | ND | 0.49 | 10.72 | 0.47 | 0.22 | 8.08 | 0.20 | 0.15 | |
450 | 细灰 | 1.70 | 0.51 | 13.54 | 50.85 | ND | 0.67 | 8.22 | 0.57 | 0.13 | 6.67 | 0.14 | 0.12 |
粗灰 | 1.56 | 0.42 | 15.32 | 53.03 | ND | 0.79 | 6.42 | 0.62 | 0.09 | 5.10 | 0.10 | 0.09 | |
550 | 细灰 | 1.47 | 0.62 | 14.01 | 48.00 | ND | 0.79 | 8.42 | 0.53 | 0.15 | 6.73 | 0.13 | 0.09 |
粗灰 | 1.31 | 0.84 | 14.22 | 44.64 | ND | 0.50 | 11.23 | 0.51 | 0.25 | 8.51 | 0.22 | 0.15 |
Tab. 4 Fly ash composition under different working conditions
负荷/MW | 样品 | 飞灰成分质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | TiO2 | MnO2 | Fe2O3 | SrO | BaO | ||
319 | 细灰 | 1.61 | 0.63 | 13.84 | 48.13 | ND | 0.67 | 8.67 | 0.55 | 0.15 | 6.51 | 0.15 | 0.12 |
粗灰 | 1.43 | 0.76 | 13.43 | 45.14 | ND | 0.49 | 10.72 | 0.47 | 0.22 | 8.08 | 0.20 | 0.15 | |
450 | 细灰 | 1.70 | 0.51 | 13.54 | 50.85 | ND | 0.67 | 8.22 | 0.57 | 0.13 | 6.67 | 0.14 | 0.12 |
粗灰 | 1.56 | 0.42 | 15.32 | 53.03 | ND | 0.79 | 6.42 | 0.62 | 0.09 | 5.10 | 0.10 | 0.09 | |
550 | 细灰 | 1.47 | 0.62 | 14.01 | 48.00 | ND | 0.79 | 8.42 | 0.53 | 0.15 | 6.73 | 0.13 | 0.09 |
粗灰 | 1.31 | 0.84 | 14.22 | 44.64 | ND | 0.50 | 11.23 | 0.51 | 0.25 | 8.51 | 0.22 | 0.15 |
名称 | 测试位置 | 硬度/GPa | 模量/GPa |
---|---|---|---|
粗灰 | 1 | 5.85±0.03 | 80.96±1.08 |
2 | 7.15±0.11 | 87.41±2.34 | |
3 | 0.28±0.01 | 13.09±0.77 | |
细灰 | 1 | 5.80±0.02 | 74.48±2.03 |
2 | 6.47±0.33 | 61.76±2.41 | |
3 | 0.55±0.02 | 12.65±2.44 |
Tab. 5 Hardness test results
名称 | 测试位置 | 硬度/GPa | 模量/GPa |
---|---|---|---|
粗灰 | 1 | 5.85±0.03 | 80.96±1.08 |
2 | 7.15±0.11 | 87.41±2.34 | |
3 | 0.28±0.01 | 13.09±0.77 | |
细灰 | 1 | 5.80±0.02 | 74.48±2.03 |
2 | 6.47±0.33 | 61.76±2.41 | |
3 | 0.55±0.02 | 12.65±2.44 |
1 | 翁麒宇,李端乐,禚玉群 .NH3对SCR催化剂Hg0催化氧化性能的影响[J].发电技术,2020,41(5):471-479. doi:10.12096/j.2096-4528.pgt.20059 |
WENG Q Y, LI D L, ZHUO Y Q .Influence of NH3 on Hg0 oxidation performance of SCR catalyst[J].Power Generation Technology,2020,41(5):471-479. doi:10.12096/j.2096-4528.pgt.20059 | |
2 | 安晓雪,苏胜,向军,等 .燃煤烟气中Hg迁移转化特性研究[J].发电技术,2020,41(5):489-496. doi:10.12096/j.2096-4528.pgt.20079 |
AN X X, SU S, XIANG J,et al .Hg formation and transformation characteristics in flue gas of coal-fired boiler[J].Power Generation Technology,2020,41(5):489-496. doi:10.12096/j.2096-4528.pgt.20079 | |
3 | 陈招妹,刘含笑,崔盈,等 .燃煤电厂烟气中Hg的生成、治理、测试及排放特征研究[J].发电技术,2019,40(4):355-361. doi:10.12096/j.2096-4528.pgt.19072 |
CHEN Z M, LIU H X, CUI Y,et al .Study on generation, treatment, testing and emission characteristics of Hg in flue gas of coal-fired power plants[J].Power Generation Technology,2019,40(4):355-361. doi:10.12096/j.2096-4528.pgt.19072 | |
4 | ZHONG L, ZHANG Y, JI Y,et al .Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants[J].Journal of Thermal Analysis & Calorimetry,2016,123(1):851-860. doi:10.1007/s10973-015-4966-5 |
5 | 中国环境科学研究院 . 火电厂大气污染物排放标准: [S].北京:中国环境科学出版社,2012. |
Chinese Research Academy of Environmental Sciences . Emission standard of air pollutants for thermal power plants: [S].Beijing:China Environmental Science Press,2012. | |
6 | 田祎,徐克,王硕,等 .我国汞和汞化合物临时贮存现状及环境无害化管理建议[J].化工环保,2023,43(1):132-136. doi:10.3969/j.issn.1006-1878.2023.01.020 |
TIAN Y, XU K, WANG S,et al .Current status of temporary storage of mercury and mercury compounds in China and suggestions for environmentally sound management[J].Environmental Protection of Chemical Industry,2023,43(1):132-136. doi:10.3969/j.issn.1006-1878.2023.01.020 | |
7 | 潘伟平,张永生,李文瀚,等 .燃煤汞污染监测及控制技术[J].科技导报,2014,32(33):57-60. doi:10.3981/j.issn.1000-7857.2014.33.007 |
PAN W P, ZHANG Y S, LI W H,et al .Mercury monitoring and controlling technologies for coal power plants[J].Science& Technology Review,2014,32(33):57-60. doi:10.3981/j.issn.1000-7857.2014.33.007 | |
8 | 宋畅,张翼,郝剑,等 .燃煤电厂超低排放改造前后汞污染排放特征[J].环境科学研究,2017,30(5):672-677. doi:10.13198/j.issn.1001-6929.2017.01.96 |
SONG C, ZHANG Y, HAO J,et al .Mercury emission characteristics from coal-fired power plant before and after ultra-low emission retrofitting[J].Research of Environmental Sciences,2017,30(5):672-677. doi:10.13198/j.issn.1001-6929.2017.01.96 | |
9 | 郑楚光,张军营,赵永椿,等 .煤燃烧汞的排放及控制[M].北京:科学出版社,2010. |
ZHENG C G, ZHANG J Y, ZHAO Y C,et al .Emission and control of mercury from coal combustion[M].Beijing:Science Press,2010. | |
10 | 王家伟,张永生,张翼,等 .喷射点位及温度对超低排放电厂活性炭吸附脱汞的影响[J].中国电机工程学报,2019,39(11):3303-3312. |
WANG J W, ZHANG Y S, ZHANG Y,et al .Effects of temperature and residence time on mercury control using activated carbon injection in ultra-low emission coal-fired power plant[J].Proceedings of the CSEE,2019,39(11):3303-3312. | |
11 | WANG S, ZHANG Y, GU Y,et al .Coupling of bromide and on-line mechanical modified fly ash for mercury removal at a 1000 MW coal-fired power plant[J].Fuel, 2019,247:179-186. doi:10.1016/j.fuel.2019.03.053 |
12 | ZHANG Y, MEI D, WANG T,et al .In-situ capture of mercury in coal-fired power plants using high surface energy fly ash[J].Environmental Science & Technology,2019,53(13):7913-7920. doi:10.1021/acs.est.9b01725 |
13 | WANG Y J, DUAN Y F, YANG L G,et al .Experimental study on mercury transformation and removal in coal-fired boiler flue gases[J].Fuel Processing Technology,2009,90(5):643-651. doi:10.1016/j.fuproc.2008.10.013 |
14 | 陶叶 .火电机组烟气脱汞工艺路线选择[J].电力建设,2011,32(4):74-78. doi:10.3969/j.issn.1000-7229.2011.04.018 |
TAO Y .Process route selection of mercury control for coal-fired units[J].Electric Power Construction,2011,32(4):74-78. doi:10.3969/j.issn.1000-7229.2011.04.018 | |
15 | BURMISTRZ P, KOGUT K, MARCZAK M,et al .Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission[J].Fuel Processing Technology,2016,152:250-258. doi:10.1016/j.fuproc.2016.06.011 |
16 | ZHANG Y, DUAN W, LIU Z,et al .Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J].Fuel,2014,128:274-280. doi:10.1016/j.fuel.2014.03.009 |
17 | PENG Y, WANG T, GU Y,et al .Impact of the mercury removal system using modified fly ash on particulate matter emission[J].Fuel,2021,301:121054. doi:10.1016/j.fuel.2021.121054 |
[1] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[2] | Hongwei ZHANG, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Study on the Characteristics of Heavy Metal Lead in Desulfurization Sludge Solidified by Coal-Fired Fly Ash in Power Plant [J]. Power Generation Technology, 2024, 45(3): 527-534. |
[3] | Li WANG, Huan ZHANG, Yi YE, Xinglei ZHAO. Formulation Study of N-Aminoethyl Piperazine and Sodium Glycine CO2 Absorbent [J]. Power Generation Technology, 2023, 44(5): 674-684. |
[4] | Zhigang LUO, Chengbing HE, Haoran MENG, Guodong LIU, Peng SHEN, Jun ZHANG, Haoliang ZHANG. Research on Optimization Method of Precise Ammonia Injection in SCR de-NO x System of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(4): 525-533. |
[5] | Taozhu YIN, Yongsheng ZHANG, Tao WANG, Jiawei WANG. Preparation of Sulfur-doped Porous Carbon and Its Electro-adsorption Performance for Heavy Metals in Desulfurization Wastewater [J]. Power Generation Technology, 2023, 44(3): 382-391. |
[6] | Pan JI. Study on Removal and Distribution Mechanism of Ammonia in Flue Gas of Coal-fired Power Plant [J]. Power Generation Technology, 2023, 44(3): 392-398. |
[7] | Hanxiao LIU, Gaofei GUO. Study on Hg Removal Characteristics of Fabric Filter [J]. Power Generation Technology, 2023, 44(2): 193-200. |
[8] | Hanxiao LIU, Gaofei GUO, Zhaomei CHEN. Study on WESP Multi-pollutant Emission Reduction and Energy Efficiency Test of Ultra-low Emission Unit [J]. Power Generation Technology, 2023, 44(1): 94-99. |
[9] | Jingji ZHU, Yishu XU, Jingying XU, Huakun WANG, Xiaowei LIU, Dunxi YU, Jingjing MA, Minghou XU. Effect of Co-firing Ammonia on Coal Volatile Flame Characteristics and Particulate Matter Formation Behaviours [J]. Power Generation Technology, 2022, 43(6): 908-917. |
[10] | Xiaowei YU, Cuijie KUANG. Application and Optimization of Urea Pyrolysis Technology in 1000MW Coal-fired Power Plant [J]. Power Generation Technology, 2022, 43(2): 367-372. |
[11] | Hanxiao LIU, Jianguo LI, Yuping YAO, Ying CUI, Gaofei GUO, Haitao HE, Meiling LIU, Minchao SHEN. Study on SO3 Removal Performance of Low-low Temperature Electrostatic Precipitator System [J]. Power Generation Technology, 2022, 43(1): 147-154. |
[12] | Yuting WANG, Yanqi CHEN, Gang XU, Heng CHEN. Study on Structure Optimization of Exhaust Steam Passage of Steam Turbine in Large Coal-fired Power Station [J]. Power Generation Technology, 2021, 42(4): 464-472. |
[13] | Zhigang HONG,Yang ZHANG,Yongsheng LIU,Yue ZHU. Research Overview on Unconventional Pollutant Detection and Cooperative Control Technology of Flue Gas in Coal-fired Power Plant [J]. Power Generation Technology, 2020, 41(5): 517-526. |
[14] | Xiaoxue AN,Sheng SU,Jun XIANG,Jianxun HUANG,Jizhuang XU,Lele WANG,Yi WANG,Song HU,Zijun YIN,Zhonghui WANG. Hg Formation and Transformation Characteristics in Flue Gas of Coal-fired Boiler [J]. Power Generation Technology, 2020, 41(5): 489-496. |
[15] | Weibo HAN,Shuang BIAN,Tao WANG,Jiawei WANG,Yongsheng ZHANG,Weiping PAN. Research Progress on Control of Heavy Metals Pollutants in Desulfurization Wastewater and Sludge of Coal-fired Power Plants [J]. Power Generation Technology, 2020, 41(5): 497-509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||