Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 160-167.DOI: 10.12096/j.2096-4528.pgt.21042
• Power Generation and Environmental Protection • Previous Articles Next Articles
Fuguo LIU1,2, Ke LIU2, Shouen WANG1
Received:
2021-04-25
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Fuguo LIU, Ke LIU, Shouen WANG. Pareto Fronts of Mixed Coal Quality and Cost in Power Plant Based on Chance Constraints[J]. Power Generation Technology, 2022, 43(1): 160-167.
参数 | i | j | ||
---|---|---|---|---|
1 | 2 | 3 | ||
μij /% | 1 | 10.98 | 7.08 | 13.48 |
2 | 33.62 | 31.57 | 11.07 | |
3 | 26.78 | 22.67 | 32.29 | |
4 | 37.44 | 44.60 | 51.23 | |
5 | 0.63 | 1.29 | 0.63 | |
6 | 17 996 | 19 856 | 24 125 | |
σij /% | 1 | 2.00 | 1.65 | 1.69 |
2 | 5.86 | 3.98 | 3.31 | |
3 | 1.75 | 2.02 | 1.28 | |
4 | 4.24 | 3.47 | 2.21 | |
5 | 0.08 | 0.40 | 0.15 | |
6 | 1 860 | 1 377 | 955 | |
Pj /(美元/t) | 482 | 525 | 672 |
Tab. 1 Proximate analysis parameter distribution and price of blended coal
参数 | i | j | ||
---|---|---|---|---|
1 | 2 | 3 | ||
μij /% | 1 | 10.98 | 7.08 | 13.48 |
2 | 33.62 | 31.57 | 11.07 | |
3 | 26.78 | 22.67 | 32.29 | |
4 | 37.44 | 44.60 | 51.23 | |
5 | 0.63 | 1.29 | 0.63 | |
6 | 17 996 | 19 856 | 24 125 | |
σij /% | 1 | 2.00 | 1.65 | 1.69 |
2 | 5.86 | 3.98 | 3.31 | |
3 | 1.75 | 2.02 | 1.28 | |
4 | 4.24 | 3.47 | 2.21 | |
5 | 0.08 | 0.40 | 0.15 | |
6 | 1 860 | 1 377 | 955 | |
Pj /(美元/t) | 482 | 525 | 672 |
项目 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
目标函数 | min p1 min E(p2) | min p1 min E(p2) min σH6 | min p1 min E(p2) | min p1 min E(p2) |
约束条件 | 式(17) | 式(17) | 式(17)、(24) | 式(17)、(29) |
Tab. 2 Blending model
项目 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
目标函数 | min p1 min E(p2) | min p1 min E(p2) min σH6 | min p1 min E(p2) | min p1 min E(p2) |
约束条件 | 式(17) | 式(17) | 式(17)、(24) | 式(17)、(29) |
优化解 | x1 | x2 | x3 | p1 | E(p2) | ωH1 | ωH2 | ωH3 | ωH4 | ωH5 | ωH6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μH1 | σH1 | μH2 | σH2 | μH3 | σH3 | μH4 | σH4 | μH5 | σH5 | μH6 | σH6 | ||||||
1 | 0.22 | 0.46 | 0.32 | 26.99 | 15.26 | 9.98 | 1.03 | 25.48 | 2.48 | 26.67 | 1.09 | 45.21 | 1.98 | 0.94 | 0.19 | 20 836 | 815 |
2 | 0.33 | 0.40 | 0.27 | 26.95 | 15.65 | 10.11 | 1.04 | 26.69 | 2.66 | 26.66 | 1.05 | 44.06 | 2.06 | 0.89 | 0.17 | 20 414 | 864 |
3 | 0.43 | 0.33 | 0.24 | 26.92 | 16.26 | 10.27 | 1.09 | 27.55 | 2.94 | 26.72 | 1.05 | 43.14 | 2.21 | 0.85 | 0.14 | 20 085 | 946 |
4 | 0.51 | 0.27 | 0.22 | 26.90 | 16.70 | 10.47 | 1.18 | 28.16 | 3.27 | 26.87 | 1.09 | 42.39 | 2.41 | 0.81 | 0.12 | 19 837 | 1 043 |
5 | 0.64 | 0.20 | 0.15 | 26.80 | 17.70 | 10.56 | 1.36 | 29.78 | 3.89 | 26.78 | 1.22 | 41.00 | 2.84 | 0.76 | 0.10 | 19 307 | 1 239 |
6 | 0.69 | 0.18 | 0.13 | 26.77 | 18.03 | 10.59 | 1.42 | 30.30 | 4.12 | 26.73 | 1.27 | 40.52 | 3.00 | 0.75 | 0.09 | 19 123 | 1 309 |
7 | 0.73 | 0.15 | 0.12 | 26.75 | 18.11 | 10.71 | 1.50 | 30.58 | 4.34 | 26.85 | 1.32 | 40.18 | 3.15 | 0.73 | 0.09 | 19 020 | 1 379 |
8 | 0.86 | 0.08 | 0.06 | 26.64 | 18.93 | 10.81 | 1.72 | 32.05 | 5.03 | 26.78 | 1.51 | 38.88 | 3.64 | 0.68 | 0.08 | 18 527 | 1 597 |
9 | 0.96 | 0.03 | 0.02 | 26.54 | 19.56 | 10.93 | 1.92 | 33.17 | 5.61 | 26.77 | 1.68 | 37.86 | 4.06 | 0.65 | 0.08 | 18 151 | 1 781 |
Tab. 3 Some optimal solutions in Pareto fronts
优化解 | x1 | x2 | x3 | p1 | E(p2) | ωH1 | ωH2 | ωH3 | ωH4 | ωH5 | ωH6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μH1 | σH1 | μH2 | σH2 | μH3 | σH3 | μH4 | σH4 | μH5 | σH5 | μH6 | σH6 | ||||||
1 | 0.22 | 0.46 | 0.32 | 26.99 | 15.26 | 9.98 | 1.03 | 25.48 | 2.48 | 26.67 | 1.09 | 45.21 | 1.98 | 0.94 | 0.19 | 20 836 | 815 |
2 | 0.33 | 0.40 | 0.27 | 26.95 | 15.65 | 10.11 | 1.04 | 26.69 | 2.66 | 26.66 | 1.05 | 44.06 | 2.06 | 0.89 | 0.17 | 20 414 | 864 |
3 | 0.43 | 0.33 | 0.24 | 26.92 | 16.26 | 10.27 | 1.09 | 27.55 | 2.94 | 26.72 | 1.05 | 43.14 | 2.21 | 0.85 | 0.14 | 20 085 | 946 |
4 | 0.51 | 0.27 | 0.22 | 26.90 | 16.70 | 10.47 | 1.18 | 28.16 | 3.27 | 26.87 | 1.09 | 42.39 | 2.41 | 0.81 | 0.12 | 19 837 | 1 043 |
5 | 0.64 | 0.20 | 0.15 | 26.80 | 17.70 | 10.56 | 1.36 | 29.78 | 3.89 | 26.78 | 1.22 | 41.00 | 2.84 | 0.76 | 0.10 | 19 307 | 1 239 |
6 | 0.69 | 0.18 | 0.13 | 26.77 | 18.03 | 10.59 | 1.42 | 30.30 | 4.12 | 26.73 | 1.27 | 40.52 | 3.00 | 0.75 | 0.09 | 19 123 | 1 309 |
7 | 0.73 | 0.15 | 0.12 | 26.75 | 18.11 | 10.71 | 1.50 | 30.58 | 4.34 | 26.85 | 1.32 | 40.18 | 3.15 | 0.73 | 0.09 | 19 020 | 1 379 |
8 | 0.86 | 0.08 | 0.06 | 26.64 | 18.93 | 10.81 | 1.72 | 32.05 | 5.03 | 26.78 | 1.51 | 38.88 | 3.64 | 0.68 | 0.08 | 18 527 | 1 597 |
9 | 0.96 | 0.03 | 0.02 | 26.54 | 19.56 | 10.93 | 1.92 | 33.17 | 5.61 | 26.77 | 1.68 | 37.86 | 4.06 | 0.65 | 0.08 | 18 151 | 1 781 |
1 | 陈广伟,黄建平,徐鹏志 .兰炭在600 MW无烟煤“W”火焰锅炉上的掺烧应用研究[J].发电技术,2021,42(2):267-272. doi:10.12096/j.2096-4528.pgt.20029 |
CHEN G W, HUANG J P, XU P Z .Application research of semi-coke blending on a 600 MW anthracite “W” flame boiler[J].Power Generation Technology,2021,42(2):267-272. doi:10.12096/j.2096-4528.pgt.20029 | |
2 | SLOSS L L .Blending of coals to meet power station requirements[R].London:IEA Clean Coal Centre,2014. |
3 | GUO X J, CHEN M, WU J W .Coal blending optimization of coal preparation production process based on improved GA[J].Procedia Earth & Planetary Science,2009,1(1):654-660. doi:10.1016/j.proeps.2009.09.103 |
4 | SHIH J S, FREY H C .Coal blending optimization under uncertainty[J].European Journal of Operational Research,1995,83(3):452-465. doi:10.1016/0377-2217(94)00243-6 |
5 | CARNIATO A, CAMPONOGARA E .Integrated coal-mining operations planning: modeling and case study[J].Coal Preparation,2011,31(6):299-334. doi:10.1080/19392699.2011.576656 |
6 | AMINI S H, VASS C, SHAHABI M,et al .Optimization of coal blending operations under uncertainty-robust optimization approach[J].International Journal of Coal Preparation and Utilization,2019,42(1):1-21. |
7 | BERETTA F S, COSTA J F C L, KOPPE J C .Reducing coal quality attributes variability using properly designed blending piles helped by geostatistical simulation[J].International Journal of Coal Geology,2010,84(2):83-93. doi:10.1016/j.coal.2010.08.007 |
8 | CHAKRABORTY A, CHAKRABORTY M .Multi criteria genetic algorithm for optimal blending of coal[J].Opsearch,2012,49(4):386-399. doi:10.1007/s12597-012-0089-y |
9 | 高继录,邹天舒,李志山,等 .1000 MW机组神华煤掺烧霍林河褐煤的试验研究[J].动力工程学报,2012,32(6):430-434. doi:10.3969/j.issn.1674-7607.2012.06.002 |
GAO J L, ZHOU T S, LI Z S,et al .Experimental study on mixed combustion of Shenhua coal with Huolinhe coal in a 1000 MW power unit[J].Journal of Chinese Society of Power Engineering,2012,32(6):430-434. doi:10.3969/j.issn.1674-7607.2012.06.002 | |
10 | LINEBERRY G T, GILLENWATER E L .Linear programming to improve raw coal blending:a new twist to an old tool[J].Coal Preparation,1987,4(3/4):227-239. doi:10.1080/07349348708945534 |
11 | 夏季,华志刚,彭鹏,等 .基于非支配排序遗传算法的无约束多目标优化配煤模型[J].中国电机工程学报,2011,31(2):85-90. doi:10.1631/jzus.A1000135 |
XIA J, HUA Z G, PENG P,et al .A model of unconstrained multi-objective optimization of coal blending based on the non-dominated sorting genetic algorithm[J].Proceedings of the CSEE,2011,31(2):85-90. doi:10.1631/jzus.A1000135 | |
12 | 张宗振,李德波,李新虎,等 .污泥掺烧对燃煤机组锅炉效率及环保系统的影响[J].浙江电力,2020,39(7):93-101. doi:10.19585/j.zjdl.202007016 |
ZHANG Z Z, LI D B, LI X H,et al .Impact of co-combustion of sludge with coal on boiler efficiency and environmental protection system of coal-fired generating units[J].Zhejiang Electric Power,2020,39(7):93-101. doi:10.19585/j.zjdl.202007016 | |
13 | 任耀峰,王玉琢 .正态随机变量线性组合的分布问题[J].高等数学研究,2013,16(4):104-106. doi:10.3969/j.issn.1008-1399.2013.04.037 |
REN Y F, WANG Y Z .On linear combinations of normal random variables[J].Studies in College Mathematics,2013,16(4):104-106. doi:10.3969/j.issn.1008-1399.2013.04.037 | |
14 | 孙有发 .倒数正态分布与证券收益异象原因研究[J].统计与决策,2007(9):21-22. doi:10.3969/j.issn.1002-6487.2007.09.010 |
SUN Y F .Research on the reciprocal normal distribution and the causes of abnormal returns[J].Statistics and Decision Making,2007(9):21-22. doi:10.3969/j.issn.1002-6487.2007.09.010 | |
15 | 蒋猛,黄宇,廖伟涵,等 .基于改进NSGA-II 算法的电-气-热综合能源系统多目标优化[J].发电技术,2020,41(2):131-136. |
JIANG M, HUANG Y, LIAO WH,et al .Multi-objective optimization of electricity-gas-heat integrated energy system[J].Power Generation Technology,2020,41(2):131-136. |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[3] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[4] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[5] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[6] | Siqin CHEN, Yinan ZHU, Xiaochen LI, Xuehai WANG. Research on Optimization Method of Coal Blending for Carbon Emission Reduction Based on Bi-level Programming [J]. Power Generation Technology, 2023, 44(2): 155-162. |
[7] | Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant [J]. Power Generation Technology, 2022, 43(5): 740-747. |
[8] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[9] | Yao XIAO, Wenze NIU, Gaosheng WEI, Liu CUI, Xiaoze DU. Review on Research Status and Developing Tendency of Solar Photovoltaic/Thermal Technology [J]. Power Generation Technology, 2022, 43(3): 392-404. |
[10] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[11] | Chunxi DAI, Ping LIANG, Deyong CHE, Haiting LIU. Study on Flow Characteristics in Honeycomb Tube Wet Electrostatic Precipitator [J]. Power Generation Technology, 2022, 43(1): 155-159. |
[12] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[13] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[14] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[15] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||