Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 323-330.DOI: 10.12096/j.2096-4528.pgt.22038
• New Energy • Previous Articles Next Articles
Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI
Received:
2023-03-15
Published:
2024-04-30
Online:
2024-04-29
Supported by:
CLC Number:
Yixiang SHAO, Jian LIU, Liping HU, Liang GUO, Yuan FANG, Rui LI. Research on an Ultra-Short-Term Wind Speed Prediction Method Based on Improved Combined Neural Networks[J]. Power Generation Technology, 2024, 45(2): 323-330.
a个输入 | b个输出 |
---|---|
x1,x2,…,xa | xa+1,xa+2,…,xa+b |
x2,x3,…,xa+1 | xa+2,xa+3,…,xa+b+1 |
… | … |
xK,xK+1,…,xK+a-1 | xK+a,xK+a+2,…,xK+a+b-1 |
Tab. 1 Wind speed sample mapping structure
a个输入 | b个输出 |
---|---|
x1,x2,…,xa | xa+1,xa+2,…,xa+b |
x2,x3,…,xa+1 | xa+2,xa+3,…,xa+b+1 |
… | … |
xK,xK+1,…,xK+a-1 | xK+a,xK+a+2,…,xK+a+b-1 |
误差 | 等权重组合预测模型 | DE优化组合预测模型 |
---|---|---|
EMAE/(m/s) | 0.087 7 | 0.086 1 |
ERMSE/(m/s) | 0.120 1 | 0.117 8 |
EMAPE/% | 1.619 3 | 1.591 1 |
EME/(m/s) | -0.025 2 | -0.025 1 |
Tab. 2 Evaluation metrics for the wind speed prediction results of the two models
误差 | 等权重组合预测模型 | DE优化组合预测模型 |
---|---|---|
EMAE/(m/s) | 0.087 7 | 0.086 1 |
ERMSE/(m/s) | 0.120 1 | 0.117 8 |
EMAPE/% | 1.619 3 | 1.591 1 |
EME/(m/s) | -0.025 2 | -0.025 1 |
误差 | BP 神经网络预测模型 | LSTM神经网络预测模型 | DE优化组合预测模型 |
---|---|---|---|
EMAE/(m/s) | 0.096 5 | 0.089 6 | 0.086 1 |
ERMSE/(m/s) | 0.129 5 | 0.122 0 | 0.117 8 |
EMAPE/% | 1.772 3 | 1.652 0 | 1.591 1 |
EME/(m/s) | -0.025 5 | -0.025 3 | -0.025 1 |
Tab. 3 Evaluation metrics for the wind speed prediction results of the different models
误差 | BP 神经网络预测模型 | LSTM神经网络预测模型 | DE优化组合预测模型 |
---|---|---|---|
EMAE/(m/s) | 0.096 5 | 0.089 6 | 0.086 1 |
ERMSE/(m/s) | 0.129 5 | 0.122 0 | 0.117 8 |
EMAPE/% | 1.772 3 | 1.652 0 | 1.591 1 |
EME/(m/s) | -0.025 5 | -0.025 3 | -0.025 1 |
1 | 颜湘武,王德胜,隗小雪,等 .风电机组故障穿越与频率调节风储联合控制策略研究[J].中国电机工程学报,2021,41(17):5911-5923. doi:10.13334/j.0258-8013.pcsee.201129 |
YAN X W, WANG D S, WEI X X,et al .Research on the wind power-storage joint control based on fault ride-through and frequency regulation of wind turbine[J].Proceedings of the CSEE,2021,41(17):5911-5923. doi:10.13334/j.0258-8013.pcsee.201129 | |
2 | 王诗超,孙仕达,郝为瀚,等 .基于VSC与DRU的混合级联型海上风电直流外送系统控制与阻抗建模[J].电力建设,2022,43(4):38-48. doi:10.12204/j.issn.1000-7229.2022.04.005 |
WANG S C, SUN S D, HAO W H,et al .Control and impedance modeling of offshore wind power hybrid cascaded DC transmission system based on of VSC and DRU[J].Electric Power Construction,2022,43(4):38-48. doi:10.12204/j.issn.1000-7229.2022.04.005 | |
3 | 李铮,郭小江,申旭辉,等 .我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 |
LI Z, GUO X J, SHEN X H,et al .Summary of technologies for the development of offshore wind power industry in China[J].Power Generation Technology,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 | |
4 | 房方,梁栋炀,刘亚娟,等 .海上风电智能控制与运维关键技术[J].发电技术,2022,43(2):175-185. doi:10.12096/j.2096-4528.pgt.22042 |
FANG F, LIANG D Y, LIU Y J,et al .Key technologies for intelligent control and operation and maintenance of offshore wind power[J].Power Generation Technology,2022,43(2):175-185. doi:10.12096/j.2096-4528.pgt.22042 | |
5 | 瞿晟珉,应飞祥,秦少茜,等 .“双碳”背景下海上风电维护策略研究现状与展望[J].智慧电力,2023,51(10):23-30. |
QU S M, YING F X, QIN S X,et al .Research status and prospects of offshore wind power maintenance strategy under background of carbon peak and carbon neutrality[J].Smart Power,2023,51(10):23-30. | |
6 | 李国庆,徐亚男,江守其,等 .海上风电经柔性直流联网系统受端交流故障穿越协调控制策略[J].电力系统保护与控制,2022,50(7):111-119. |
LI G Q, XU Y N, JIANG S Q,et al .Coordinated control strategy for receiving-end AC fault ride-through of an MMC-HVDC connecting offshore wind power[J].Power System Protection and Control,2022,50(7):111-119. | |
7 | 陈露洁,徐式蕴,孙华东,等 .高比例电力电子电力系统宽频带振荡研究综述[J].中国电机工程学报,2021,41(7):2297-2310. doi:10.13334/j.0258-8013.pcsee.191863 |
CHEN L J, XU S Y, SUN H D,et al .A survey on wide-frequency oscillation for power systems with high penetration of power electronics[J].Proceedings of the CSEE,2021,41(7):2297-2310. doi:10.13334/j.0258-8013.pcsee.191863 | |
8 | 胡姚刚,刘怀盛,时萍萍,等 .风电机组偏航系统故障诊断与寿命预测综述[J].中国电机工程学报,2022,42(13):4871-4883. |
HU Y G, LIU H S, SHI P P,et al .Overview of fault diagnosis and life prediction for wind turbine yaw system[J].Proceedings of the CSEE,2022,42(13):4871-4883. | |
9 | 王爽心,郭婷婷,李蒙 .风电机组变工况变桨系统异常状态在线识别[J].中国电机工程学报,2019,39(17):5144-5152. |
WANG S X, GUO T T, LI M .On-line abnormal state identification of pitch system based on transitional mode for wind turbine[J].Proceedings of the CSEE,2019,39(17):5144-5152. | |
10 | 陈子含,滕伟,胥学峰,等 .基于图卷积网络和风速差分拟合的中长期风功率预测[J].中国电力,2023,56(10):96-105. |
CHEN Z H, TENG W, XU X F,et al .Medium and long term wind power prediction based on graph convolutional network and wind velocity differential fitting[J].Electric Power System,2023,56(10):96-105. | |
11 | 丁藤,冯冬涵,林晓凡,等 .基于修正后ARIMA-GARCH模型的超短期风速预测[J].电网技术,2017,41(6):1808-1814. |
DING T, FENG D H, LIN X F,et al .Ultra-short-term wind speed forecasting based on improved ARIMA-GARCH model[J].Power System Technology,2017,41(6):1808-1814. | |
12 | 乔倜傥,谢丽蓉,叶家豪,等 .基于风速波动特性划分的短期风电功率预测[J/OL].电测与仪表:1-9[2023-02-17].. |
QIAO T T, XIE L R, YE J H,et al .Short-term wind power forecasting based on wind speed fluctuation characteristics[J/OL].Electrical Measurement and Instrumentation:1-9[2023-02-17].. | |
13 | 苏艳萍,田源 .变速恒频风力发电系统风速短期预测方法研究[J].电网与清洁能源,2022,38(2):88-93. doi:10.3969/j.issn.1674-3814.2022.02.013 |
SU Y P, TIAN Y .Research on short-term wind speed prediction method of variable speed constant frequency wind power generation system[J].Power System and Clean Energy,2022,38(2):88-93. doi:10.3969/j.issn.1674-3814.2022.02.013 | |
14 | 凡航,张雪敏,梅生伟,等 .基于时空神经网络的风电场超短期风速预测模型[J].电力系统自动化,2021,45(1):28-35. doi:10.7500/AEPS20190831001 |
FAN H, ZHANG X M, MEI S W,et al .Ultra-short-term wind speed prediction model for wind farms based on spatiotemporal neural network[J].Automation of Electric Power Systems,2021,45(1):28-35. doi:10.7500/AEPS20190831001 | |
15 | 薛禹胜,郁琛,赵俊华,等 .关于短期及超短期风电功率预测的评述[J].电力系统自动化,2015,39(6):141-151. doi:10.7500/AEPS20141218003 |
XUE Y S, YU C, ZHAO J H,et al .A review on ultra-short-term wind power prediction[J].Automation of Electric Power Systems,2015,39(6):141-151. doi:10.7500/AEPS20141218003 | |
16 | VILLANUEVA D, FEIJÓO A .Normal-based model for true power curves of wind turbines[J].IEEE Transactions on Sustainable Energy,2016,7(3):1005-1011. doi:10.1109/tste.2016.2515264 |
17 | 丁华杰,宋永华,胡泽春,等 .基于风电场功率特性的日前风电预测误差概率分布研究[J].中国电机工程学报,2013,33(34):136-144. |
DING H J, SONG Y H, HU Z C,et al .Probability density function of day-ahead wind power forecast errors based on power curves of wind farms[J].Proceedings of the CSEE,2013,33(34):136-144. | |
18 | 肖永山,王维庆,霍晓萍 .基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007(2):106-108. doi:10.3969/j.issn.1002-6339.2007.02.003 |
XIAO Y S, WANG W Q, HUO X P .Study on the time-series wind speed forecasting of the wind farm based on neural networks[J].Energy Conservation Technology,2007(2):106-108. doi:10.3969/j.issn.1002-6339.2007.02.003 | |
19 | 王一珺,贾嵘 .基于Elman和实测风速功率数据的短期风功率预测[J].高压电器,2017,53(9):125-129. |
WANG Y J, JIA R .Short-term wind power forecasting based on Elman neural network and measured wind speed power data[J].High Voltage Apparatus,2017,53(9):125-129. | |
20 | 段新会,李文鑫 .基于改进粒子群优化神经网络的超短期风速预测[J].自动化与仪表,2021,36(3):76-80. |
DUAN X H, LI W X .Ultra-short-term wind speed prediction based on improved particle swarm neural network algorithm[J].Automation & Instrumentation,2021,36(3):76-80. | |
21 | 李冰,张妍,刘石 .基于LSTM的短期风速预测研究[J].计算机仿真,2018,35(11):456-461. doi:10.3969/j.issn.1006-9348.2018.11.099 |
LI B, ZHANG Y, LIU S .Wind speed short term prediction study based on LSTM[J].Computer Simulation,2018,35(11):456-461. doi:10.3969/j.issn.1006-9348.2018.11.099 | |
22 | 朱丽娜 .风电场短期风速预测方法研究[D].兰州:兰州理工大学,2021. |
ZHU L N .Research on short-term wind speed prediction method for wind farm[D].Lanzhou :Lanzhou University of Technology,2021. | |
23 | WANG K, QI X, LIU H,et al .Deep belief network based k-means cluster approach for short-term wind power forecasting[J].Energy,2018,165:840-852. doi:10.1016/j.energy.2018.09.118 |
24 | 刘纯,范高锋,王伟胜,等 .风电场输出功率的组合预测模型[J].电网技术,2009,33(13):74-79. |
LIU C, FAN G F, WANG W S,et al .A combination forecasting model for wind farm output power[J].Power System Technology,2009,33(13):74-79. | |
25 | 张妍,王东风,韩璞 .一种风电场短期风速组合预测模型[J].太阳能学报,2017,38(6):1510-1516. |
ZHANG Y, WANG D F, HAN P .Combination forecasting model of short-term wind speed for wind farm[J].Acta Energiae Solaris Sinica,2017,38(6):1510-1516. | |
26 | 赵征,王晓亮,张亚刚 .基于ARMA-ARCH模型和BP模型的短期风速组合预测方法研究[J].电网与清洁能源,2018,34(11):45-51. doi:10.3969/j.issn.1674-3814.2018.11.008 |
ZHAO Z, WANG X L, ZHANG Y G .Short-term wind speed combined prediction based on ARMA-ARCH model and BP model[J].Power System and Clean Energy,2018,34(11):45-51. doi:10.3969/j.issn.1674-3814.2018.11.008 | |
27 | 刘辉,李岩,曹权 .基于小波分解的神经网络组合风速预测[J].电气自动化,2021,43(1):45-47. doi:10.3969/j.issn.1000-3886.2021.01.014 |
LIU H, LI Y, CAO Q .Wind speed prediction through neural network combination based on wavelet decomposition[J].Electrical Automation,2021,43(1):45-47. doi:10.3969/j.issn.1000-3886.2021.01.014 | |
28 | 王耀庆,孙建平,李冰,等 .基于小波变换和LSTM的短期风速预测研究[J].计算机仿真,2021,38(2):438-443. doi:10.3969/j.issn.1006-9348.2021.02.092 |
WANG Y Q, SUN J P, LI B,et al .Short-term wind speed forecasting study based on wavelet transform and LSTM[J].Computer Simulation,2021,38(2):438-443. doi:10.3969/j.issn.1006-9348.2021.02.092 | |
29 | 王俊,李霞,周昔东,等 .基于VMD和LSTM的超短期风速预测[J].电力系统保护与控制,2020,48(11):45-52. |
WANG J, LI X, ZHOU X D,et al .Ultra-short-term wind speed prediction based on VMD-LSTM[J].Power System Protection and Control,2020,48(11):45-52. | |
30 | 李相俊,许格健 .基于长短期记忆神经网络的风力发电功率预测方法[J].发电技术,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 |
LI X J, XU G J .Wind power prediction method based on long short-term memory neural network[J].Power Generation Technology,2019,40(5):426-433. doi:10.12096/j.2096-4528.pgt.19108 |
[1] | Yu CHEN, Hong DING, Yong CUI, Li ZHU, Shijun CHEN, Qiuyang LING, Yongsheng XU, Jian ZHENG. Research on Temperature Situation Awareness and Auxiliary Decision-Making System Scheme of Substation Equipment [J]. Power Generation Technology, 2024, 45(4): 744-752. |
[2] | Chong ZHANG, Bo LI, Xiaoyu LI, Hongbo LIU, Yongfa LIU. A Frequency Regulation Method of Energy Storage System Based on Adaptive Adjustment of Virtual Synchronous Generator Control Parameters [J]. Power Generation Technology, 2024, 45(4): 772-780. |
[3] | Dan ZHOU, Zhi YUAN, Ji LI, Wei FAN. An Advanced Fuzzy Control Strategy for Hybrid Energy Storage Systems Considering Smoothing of Wind Power Fluctuations at Future Moments [J]. Power Generation Technology, 2024, 45(3): 412-422. |
[4] | Junhui LI, Guohang CHEN, Teng MA, Cuiping LI, Xingxu ZHU, Chen JIA. Optimal Control Strategy of Peak Shaving of Flow Battery Energy Storage System Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(3): 434-447. |
[5] | Hongbo LIU, Yongfa LIU, Yang REN, Li SUN, Shencheng LIU. Energy Storage Configuration Considering the System Wind Power Reserve Capacity Under High Wind Power Permeability [J]. Power Generation Technology, 2024, 45(2): 260-272. |
[6] | Xinrong YAN, Ningning ZHANG, Kuichao MA, Chao WEI, Shuai YANG, Binbin PAN. Overview of Current Situation and Trend of Offshore Wind Power Development in China [J]. Power Generation Technology, 2024, 45(1): 1-12. |
[7] | Shuai XU, Yufei YANG, Ao GANG, Yuetao XIE, Xiaoming ZHANG, Gongpeng LIU. Research on Key Technologies and Industrial Chain Cooperation Paths of Floating Offshore Wind Power Between China and Europe [J]. Power Generation Technology, 2024, 45(1): 13-23. |
[8] | Xiaoqiang JIA, Yongbiao YANG, Jiao DU, Haiqing GAN, Nan YANG. Study on Uncertainty Operation Optimization of Virtual Power Plant Based on Intelligent Prediction Model Under Climate Change [J]. Power Generation Technology, 2023, 44(6): 790-799. |
[9] | Caixin SUN, Bo ZHANG, Wei TANG, Yiming ZHOU, Mingzhi FU, Meng QIN, Xiaojiang GUO. Research and Practice on Localization of Offshore Wind Turbines [J]. Power Generation Technology, 2023, 44(5): 696-702. |
[10] | Wenhu JIA, Qunjie XU. Research Progress of Anti-Corrosion Technology for Offshore Wind Power Facilities [J]. Power Generation Technology, 2023, 44(5): 703-711. |
[11] | Jingcheng SU, Zhiqiang WANG, Jiangjiang QU, Kai ZHANG. Pressure Difference Prediction of Air Preheater in Coal-Fired Power Plant Based on BP Neural Network and Support Vector Regression [J]. Power Generation Technology, 2023, 44(4): 550-556. |
[12] | Jizhen AN, Fuhao ZHENG, Yifan LIU, Heng CHEN, Gang XU. Study on Induced Draft Fan Fault Warning of Thermal Power Unit Based on Big Data Analysis [J]. Power Generation Technology, 2023, 44(4): 557-564. |
[13] | Jian YANG, Yu LIU, Kunpeng HUANG, Yazhou LUO, Siqing NIU, Wei WANG, Jiafei HUAN, Lei ZHANG, Pei ZHANG, Huawei LI. A Method for Estimating Available Power of Wind Farms by Considering the Power Generation Conditions and Station Losses [J]. Power Generation Technology, 2023, 44(2): 235-243. |
[14] | Shuai CHU, Aihua WANG, Weichun GE, Yinxuan LI, Dai CUI. Analytical Method for Power Grid Dispatching Centralized Thermal Storage to Reduce Wind Abandoned Rate [J]. Power Generation Technology, 2023, 44(1): 18-24. |
[15] | Yiming ZHOU, Shu YAN, Xin LIU, Bo ZHANG, Yutong GUO, Xiaojiang GUO. Summary of Offshore Wind Support Structure Integrated Design in China [J]. Power Generation Technology, 2023, 44(1): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||