Power Generation Technology ›› 2022, Vol. 43 ›› Issue (5): 740-747.DOI: 10.12096/j.2096-4528.pgt.22089
• New Energy Storage System • Previous Articles Next Articles
Yunfei XU1, Shuimu WU2, Yingjie LI1
Received:
2022-04-29
Published:
2022-10-31
Online:
2022-11-04
Supported by:
CLC Number:
Yunfei XU, Shuimu WU, Yingjie LI. Research Progress of CaO-CO2 Thermochemical Heat Storage Technology for Concentrated Solar Power Plant[J]. Power Generation Technology, 2022, 43(5): 740-747.
1 | 宋汶秦,吕金历,赵玲霞,等 .光热-风电联合运行的电力系统经济调度策略研究[J].电力系统保护与控制,2020,48(5):95-102. |
SONG W Q, LÜ J L, ZHAO L X,et al .Study on the economic dispatch strategy of power system with combined operation of concentrated solar power and wind farm[J].Power System Protection and Control,2020,48(5):95-102. | |
2 | 梁政,魏震波,孙舟倍,等 .光热发电商参与下的电力现货市场均衡分析[J].电力建设,2022,43(1):122-131. doi:10.12204/j.issn.1000-7229.2022.01.014 |
LIANG Z, WEI Z B, SUN Z B,et al .Analysis of the equilibrium of electricity spot market with the participation of CSP[J].Electric Power Construction,2022,43(1):122-131. doi:10.12204/j.issn.1000-7229.2022.01.014 | |
3 | 姜红丽,刘雨茜,冯一鸣,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y Q, FENG Y M,et al .Analysis of power generation technology trend in 14th five-year plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
4 | BAILERA M, PASCUAL S, LISBONA P,et al .Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants[J].Energy,2021,225:120306. doi:10.1016/j.energy.2021.120306 |
5 | SAKELLARIOU K G, KARAGIANNAKIS G, CRIADO Y A,et al .Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J].Solar Energy,2015,122:215-230. doi:10.1016/j.solener.2015.08.011 |
6 | SINGH A, TESCARI S, LANTIN G,et al .Solar thermochemical heat storage via the Co3O4/CoO looping cycle:storage reactor modelling and experimental validation[J].Applied Sciences,2018,8(8):1375-1386. |
7 | AFFLERBACH S, AFFLERBACH K, TRETTIN R,et al .Improvement of a semipermeable shell for encapsulation of calcium hydroxide for thermochemical heat storage solutions[J].Solar Energy,2021,217:208-222. doi:10.1016/j.solener.2021.02.005 |
8 | KYAW K, MATSUDA H, HASATANI M .Applicability of carbonation/decarbonation reactions to high-temperature thermal energy storage and temperature upgrading[J].Journal of Chemical Engineering of Japan,1996,29:119-125.. doi:10.1252/jcej.29.119 |
9 | EDWARDS S E B, MATERIC V .Calcium looping in solar power generation plants[J].Solar Energy,2012,86(9):2494-2503. doi:10.1016/j.solener.2012.05.019 |
10 | CHACARTEGUI R, ALOVISIO A, ORTIZ C,et al .Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle[J].Applied Energy,2016,173:589-605. doi:10.1016/j.apenergy.2016.04.053 |
11 | ORTIZ C, CHACAREGUI R, VALVERDE J M,et al .Power cycles integration in concentrated solar power plants with energy storage based on calcium looping[J].Energy Conversion and Management,2017,149:815-829. doi:10.1016/j.enconman.2017.03.029 |
12 | KARASAVVAS E, PANOPOULOS K D, PAPADOPOULOU S,et al .Design of an integrated CSP-Calcium looping for uninterrupted power production through energy storage[J].Chemical Engineering Transactions,2018,70:2131-2136. |
13 | VALVERDE J M, BAREA-LOPEZ M, PEREJON A,et al .Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power[J].Energy & Fuels,2017,31(4):4226-4236. doi:10.1021/acs.energyfuels.6b03364 |
14 | SUN H, LI Y J, BIAN Z G,et al .Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CO3 cycles[J].Energy Conversion and Management,2019,197:111885. doi:10.1016/j.enconman.2019.111885 |
15 | SARRION B, VALVERDE J M, PEREJON A,et al .On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power[J].Energy Technology,2016,4(8):1013-1019. doi:10.1002/ente.201600068 |
16 | VALVERDE J M, MEDINA S .Limestone calcination under calcium-looping conditions for CO2 capture and thermochemical energy storage in the presence of H2O: an in situ XRD analysis[J].Physical Chemistry Chemical Physics:PCCP,2017,19:7587. doi:10.1039/c7cp00260b |
17 | DURAN-MARTIN J D, SANCHEZ JIMENEZ P E, VALVERDE J M,et al .Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage[J].Journal of Advanced Research,2020,22:67-76. doi:10.1016/j.jare.2019.10.008 |
18 | MA Z K, LI Y J, ZHANG W,et al .Energy storage and attrition performance of limestone under fluidization during CaO/CaCO3 cycles[J].Energy,2020,207:118291. doi:10.1016/j.energy.2020.118291 |
19 | CHEN J, DUAN L B, SUN Z .Review on the development of sorbents for calcium looping[J].Energy & Fuels. 2020,34:7806-7836. doi:10.1021/acs.energyfuels.0c00682 |
20 | ANDRE L, ABANADES S .Evaluation and performances comparison of calcium,strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage[J].Journal of Energy Storage,2017,13:193-205. doi:10.1016/j.est.2017.07.014 |
21 | KHOSA A A, ZHAO C .Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica[J].Solar Energy,2019,188:619-630. doi:10.1016/j.solener.2019.06.048 |
22 | AIHARA M, NAGAI T, MATSUSHITA J,et al .Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J].Applied Energy,2001,69:225-238. doi:10.1016/s0306-2619(00)00072-6 |
23 | HAN R, GAO J, WEI S,et al .Development of dense Ca-based, Al-stabilized composites with high volumetric energy density for thermochemical energy storage of concentrated solar power[J].Energy Conversion and Management,2020,221:113201. doi:10.1016/j.enconman.2020.113201 |
24 | SANCHEZ J P E, PEREJON A, BENITEZ G M,et al .High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants[J].Applied Energy,2019,235:543-552. doi:10.1016/j.apenergy.2018.10.131 |
25 | WANG K, GU F, CLOUGH P T,et al .Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J].Chemical Engineering Journal,2020,390:124163. doi:10.1016/j.cej.2020.124163 |
26 | OBERMEIER J, SAKELLARIOU K G, TSONGIDIS N I,et al .Material development and assessment of an energy storage concept based on the CaO-looping process[J].Solar Energy,2017,150:298-309. doi:10.1016/j.solener.2017.04.058 |
27 | BENITEZ-GUERRERO M, VALVERDE J M, PEREJON A,et al .Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J].Applied Energy,2018,210:108-116. doi:10.1016/j.apenergy.2017.10.109 |
28 | SUN H, LI Y J, YAN X Y,et al .CaO/CO3 thermochemical heat storage performance of CaO-based micrometre-sized tubular composite[J].Energy Conversion and Management,2020,222:113222. doi:10.1016/j.enconman.2020.113222 |
29 | YAN X Y, LI Y J, SUN C,et al. Enhanced H 2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material[J].Applied Energy,2022,312:118737. |
30 | SUN H, LI Y J, YAN X Y,et al .Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure[J].Applied Energy,2020,263:114650. doi:10.1016/j.apenergy.2020.114650 |
31 | 马张珂,李英杰,边志国,等 .基于钙循环的Mn-Mg修饰石灰石流态化储热及磨损特性[J].石油学报(石油加工),2020,36(6):1370-1378. doi:10.3969/j.issn.1001-8719.2020.06.028 |
MA Z K, LI Y J, BIAN Z G,et al .Heat storage and attrition performance of Mn-Mg modified limestone based on calcium looping under fluidization[J].Acta Petrolei Sinica(Petroleum Processing Section),2020,36(6):1370-1378. doi:10.3969/j.issn.1001-8719.2020.06.028 | |
32 | ZHOU Y, ZHOU Z, LIU L,et al .Enhanced thermochemical energy storage stability of CaO-Bbased composite pellets incorporated with a Zr-based stabilizer[J].Energy & Fuels,2021,35(22):18778-18788. doi:10.1021/acs.energyfuels.1c02788 |
33 | SUN J, LIU W Q, HU Y C,et al .Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture[J].Chemical Engineering Journal,2016,285:293-303. doi:10.1016/j.cej.2015.10.026 |
34 | MAHINPEY N, SEDGHKERDAR M H, Aqsha A,et a1 .CO2 capture performance of core/shell CaO-based sorbent using mesostructured silica and titania in a multicycle CO2 capture process[J].Industrial& Engineering Chemistry Research,2016,55(16):4532-4538. doi:10.1021/acs.iecr.6b00469 |
35 | LI H, QU M, YANG Y,et al .One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture[J].Chemical Engineering Journal,2019,374:619-625. doi:10.1016/j.cej.2019.05.214 |
36 | ZHANG Y, GONG X, CHEN X,et al .Performance of synthetic CaO-based sorbent pellets for CO2 capture and kinetic analysis[J].Fuel,2018,232:205-214. doi:10.1016/j.fuel.2018.05.143 |
37 | SUN J, LIU W, CHEN H,et al. Stabilized CO 2 capture performance of extruded-spheronized CaO-based pellets by microalgae templating[J].Proceedings of the Combustion Institute,2017,36(3):3977-3984. |
38 | TONG X, LIU W, YANG Y,et al .A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J].Fuel Processing Technology,2019,193:149-158. doi:10.1016/j.fuproc.2019.05.018 |
39 | DUAN L B, SU C, ERANS M,et al .CO2 capture performance using biomass-templated cement-supported limestone pellets[J].Industrial & Engineering Chemistry Research,2016,55(39):10294-10300. doi:10.1021/acs.iecr.6b02965 |
40 | BAI S, SUN J, ZHOU Z,et al .Structurally improved, TiO2-incorporated,CaO-based pellets for thermochemical energy storage in concentrated solar power plants[J].Solar Energy Materials and Solar Cells,2021,226:111076. doi:10.1016/j.solmat.2021.111076 |
41 | BRODA M, MANOVIC V, ANTHONY E J,et al .Effect of pelletization and addition of steam on the cyclic performance of carbon-templated,CaO-based CO2 sorbents[J].Environmental Science & Technology,2014,48(9):5322-5328. doi:10.1021/es405668f |
42 | MANOVIC V, ANTHONY E J .Screening of binders for pelletization of CaO-based sorbents for CO2 capture[J].Energy & Fuels,2009,23(10):4797-4804. doi:10.1021/ef900266d |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[3] | Zhirong LIAO, Pengda LI, Ziqian TIAN, Chao XU, Gaosheng WEI. Heat Transfer Enhancement of a Cascaded Latent Heat Thermal Energy Storage System by Fins With Different Uneven Layouts [J]. Power Generation Technology, 2022, 43(1): 83-91. |
[4] | Lu DING, Xinyue XIAO, Zhengwen XI, Wenhan HUA. Simulation Calculation and Influence Analysis of High Altitude Wind Speed in Different Directions of Tower Solar Energy Receiver [J]. Power Generation Technology, 2021, 42(6): 707-714. |
[5] | Hao SUN, Bo GAO, Jianxing LIU. Study on Heliostat Field Layout of Solar Power Tower Plant [J]. Power Generation Technology, 2021, 42(6): 690-698. |
[6] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
[7] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
[8] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
[9] | Zezhong WANG, Pingrui HUANG, Gaosheng WEI, Liu CUI, Chao XU, Xiaoze DU. Research Progress of Solid-Gas Two-Phase Chemical Heat Storage Technology for Solar Thermal Power Generation [J]. Power Generation Technology, 2021, 42(2): 238-246. |
[10] | Yaodong LIU, Yanping ZHANG, Liang WAN, Wei GAO. Heat Transfer Modelling and Performance Analysis of Trough Solar Thermal Power Collector Based on Al2O3 Nanofluid [J]. Power Generation Technology, 2021, 42(2): 230-237. |
[11] | Kaiyun ZHENG. Application of Supercritical Carbon Dioxide Cycle Power Generation Technology [J]. Power Generation Technology, 2020, 41(4): 399-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||