Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine
Hao SHI1, Haiping XIAO1, Yanpeng LIU2
1.School of Energy, Power and Mechanical Engineering, North China University of Electric Power, Changping District, Beijing 102206, China 2.Thermal Power Technology Research Institute, China Datang Corporation Science and Technology General Research Institute Ltd. , Shijingshan District, Beijing 100040, China
Hao SHI, Haiping XIAO, Yanpeng LIU. Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine[J]. Power Generation Technology, 2022, 43(1): 139-146.
VASSILEV S V, KITANO K, TAKEDA S,et al .Influence of mineral and chemical composition of coal ashes on their fusibility[J].Fuel,1995,45(1):27-51. doi:10.1016/0378-3820(95)00032-3
2
VASSILEV S V, KITANO K, VASSILEVA C G .Relations between ash yield and chemical and mineral composition of coals[J].Fuel,1997,76 (1):3-8. doi:10.1016/s0016-2361(96)00181-0
CAO Y F, LI H X, HU Y,et al .Study on mathematical model of coal ash fusion temperature[J].Coal and Chemical Industry,2017,40(10):108-111.
4
CHEHREH C S, MAKAREMI S .Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods[J].Fuel Processing Technology,2013,110:79-85. doi:10.1016/j.fuproc.2012.11.005
LIN D P .The application of support vector machine in predicting ash fusion temperature of blended coals[J].Electric Power Science and Engineering,2015,31(8):66-70. doi:10.3969/j.issn.1672-0792.2015.08.012
LI Q Y, ZHOU H, LIN E P,et al .Prediction of ash fusion temperature based on grid search and support vector machine[J].Journal of Zhejiang University (Engineering Science),2011,45(12):2181-2187. doi:10.3785/j.issn.1008-973X.2011.12.017
ZHAO X Q, WU S J, HE G L,et al .Study of a support vector machine-based model for predicting melting points of ash[J].Journal of Engineering for Thermal Energy and Power,2011,26(4):436-439. doi:10.1007/s12583-011-0163-z
8
LIANG W, WANG G W, NING X J,et al .Application of BP neural network to the prediction of coal ash melting characteristic temperature[J].Fuel,2020,260:116324. doi:10.1016/j.fuel.2019.116324
JIANG S J, FU G F, HUANG L Y,et al .Forecasting on ash fusion temperatures of bituminous coal and biomass co-firing based on Elman neural network[J].Journal of Central South University (Science and Technology),2016,47(12):4240-4247. doi:10.11817/j.issn.1672-7207.2016.12.036
10
ZHANG X, ZHANG H, NA Y .Transformation of sodium during the ashing of Zhundong coal[J].Procedia Engineering,2015,102:305-314. doi:10.1016/j.proeng.2015.01.147
11
WU H, YRJAS P, VAINIKKA P,et al .Sulfation of alkali halides in a bench-scale bubbling fluidized bed reactor[J].Fuel,2016,177:173-179. doi:10.1016/j.fuel.2016.03.005
12
刘彦鹏 .蚁群优化算法的理论研究及其应用[D].杭州:浙江大学,2007.
LIU Y P .Research on ant colony optimization and its application[D].Hangzhou:Zhejiang University,2007.
WANG L S .Study on the ash fusion temperature of blended coals based on neural network[D].Shanghai:Shanghai Jiaotong University,2016. doi:10.1007/s12204-016-1724-1
14
李青 .基于神经网络煤的发热量和灰熔点预测[D].北京:华北电力大学,2012.
LI Q .Predicting calorific value and ash fusion temperature of coal based on neural network[D].Beijing:North China Electric Power University,2012.
15
李颖 .基于非线性理论的动力配煤模型的研究[D].杭州:浙江大学,2002.
LI Y .Research on the model of power coal blending based on nonlinear theory[D].Hangzhou:Zhejiang University,2002.
CHEN Y H .Ash fusion characteristics and fouling monitoring of low temperature heating surface based on support vector machine[D].Beijing:North China Electric Power University,2019. doi:10.1016/j.epsr.2019.01.030