Power Generation Technology ›› 2021, Vol. 42 ›› Issue (5): 554-560.DOI: 10.12096/j.2096-4528.pgt.21010
• Carbon Neutrality • Previous Articles Next Articles
Dandan WANG(), Yalou LI(
), Fang LI(
), Lu SUN(
)
Received:
2021-02-18
Published:
2021-10-31
Online:
2021-10-13
Contact:
Yalou LI
Supported by:
操作条件和结构参数 | 数值 |
操作压力P/kPa | 100 |
操作温度T/K | 973 |
阴极入口成分及其体积分数 | 100%O2 |
阳极入口成分及其体积分数 | 90%H2O,10%H2 |
电子转移数n | 2 |
阴极厚度dH2/μm | 312.5 |
阳极厚度dO2/μm | 17.5 |
电解质厚度dE/μm | 12.5 |
阴极指前因子γc/(GA/m2) | 0.39 |
阳极指前因子γa/(GA/m2) | 1.39 |
阴极活化能ΔEact, c/(MJ/mol) | 0.1 |
阳极活化能ΔEact, a/(MJ/mol) | 0.12 |
孔隙曲度ξ | 5 |
孔隙率ε | 0.3 |
孔隙平均半径r/μm | 0.5 |
Tab. 1 Operating conditions and structural parameters of electrolysis model
操作条件和结构参数 | 数值 |
操作压力P/kPa | 100 |
操作温度T/K | 973 |
阴极入口成分及其体积分数 | 100%O2 |
阳极入口成分及其体积分数 | 90%H2O,10%H2 |
电子转移数n | 2 |
阴极厚度dH2/μm | 312.5 |
阳极厚度dO2/μm | 17.5 |
电解质厚度dE/μm | 12.5 |
阴极指前因子γc/(GA/m2) | 0.39 |
阳极指前因子γa/(GA/m2) | 1.39 |
阴极活化能ΔEact, c/(MJ/mol) | 0.1 |
阳极活化能ΔEact, a/(MJ/mol) | 0.12 |
孔隙曲度ξ | 5 |
孔隙率ε | 0.3 |
孔隙平均半径r/μm | 0.5 |
电流密度/(A/m2) | 电压模拟值/V | 电压实验值/V | ||||
923 K | 973 K | 923 K | 973 K | |||
0 | 0.934 | 0.915 | 0.895 | 0.880 | ||
1 000 | 1.131 | 1.033 | 1.064 | 0.972 | ||
2 000 | 1.249 | 1.122 | 1.236 | 1.077 | ||
3 000 | 1.337 | 1.193 | 1.385 | 1.178 | ||
4 000 | 1.410 | 1.252 | 1.510 | 1.277 | ||
5 000 | 1.474 | 1.303 | 1.580 | 1.360 | ||
6 000 | 1.532 | 1.350 | 1.620 | 1.420 | ||
7 000 | 1.586 | 1.392 | 1.655 | 1.466 | ||
8 000 | 1.636 | 1.432 | 1.680 | 1.510 |
Tab. 2 Comparison of voltage simulation values and experimental values of SOEC model
电流密度/(A/m2) | 电压模拟值/V | 电压实验值/V | ||||
923 K | 973 K | 923 K | 973 K | |||
0 | 0.934 | 0.915 | 0.895 | 0.880 | ||
1 000 | 1.131 | 1.033 | 1.064 | 0.972 | ||
2 000 | 1.249 | 1.122 | 1.236 | 1.077 | ||
3 000 | 1.337 | 1.193 | 1.385 | 1.178 | ||
4 000 | 1.410 | 1.252 | 1.510 | 1.277 | ||
5 000 | 1.474 | 1.303 | 1.580 | 1.360 | ||
6 000 | 1.532 | 1.350 | 1.620 | 1.420 | ||
7 000 | 1.586 | 1.392 | 1.655 | 1.466 | ||
8 000 | 1.636 | 1.432 | 1.680 | 1.510 |
1 | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学, 2020, 26 (2): 212- 229. |
ZHANG W Q , YU B . Development status and prospects of hydrogen production by high temperature solid oxide electrolysis[J]. Journal of Electrochemistry, 2020, 26 (2): 212- 229. | |
2 | 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41 (10): 3385- 3391. |
MU S J , LIN J , XING X T , et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41 (10): 3385- 3391. | |
3 | 雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42 (2): 207- 217. |
LEI C , LI T . Technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42 (2): 207- 217. | |
4 | 严思韵, 王晨, 周登极. 含氢能气网掺混输运的综合能源系统优化研究[J]. 电力工程技术, 2021, 40 (1): 10- 17. |
YAN S Y , WANG C , ZHOU D J . Optimization of integrated electricity and gas system considering hydrogen-natural-gas mixture transportation[J]. Electric Power Engineering Technology, 2021, 40 (1): 10- 17. | |
5 | 周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49 (9): 7- 12. |
ZHOU Q , WANG N B , RAN L , et al. Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric Power, 2016, 49 (9): 7- 12. | |
6 | 陈建明, 肖佳璇. 基于弃风弃光问题的氢储能可行性研究[J]. 技术与市场, 2019, 26 (11): 23- 25. |
CHEN J , XIAO J X . Feasibility study of hydrogen storage based on the problem of abandoned wind and light[J]. Technology and Market, 2019, 26 (11): 23- 25. | |
7 | 中国电力企业联合会. 2018年全国电力工业统计快报一览表[EB/OL]. (2018-01-31)[2021-01-02]. https://max.book118.com/html/2019/0520/8056127046002024.shtm. |
China Federation of Electric Power Enterprises. List of national electric power industry statistics express in 2018[EB/OL]. (2018-01-31)[2021-01-02]. https://max.book118.com/html/2019/0520/8056127046002024.shtm. | |
8 |
CHI J , YU H . Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39 (3): 390- 394.
DOI |
9 | 俞红梅, 衣宝廉. 电解制氢与氢储能[J]. 中国工程科学, 2018, (3): 58- 65. |
YU H M , YI B L . Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic Study of CAE, 2018, (3): 58- 65. | |
10 |
霍现旭, 王靖, 蒋菱, 等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术, 2016, 5 (2): 197- 203.
DOI |
HUO X X , WANG J , JIANG L , et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5 (2): 197- 203.
DOI |
|
11 |
SCHIEBAHN S , GRUBE T , ROBINIUS M , et al. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40 (12): 4285- 4294.
DOI |
12 |
O'BRIEN J E , STOOTS C M , HERRING J S , et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production[J]. Journal of Fuel Cell Science and Technology, 2005, 2 (3): 156- 163.
DOI |
13 |
SPACIL H S , TEDMON C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells[J]. Journal of the Electrochemical Society, 1969, 116 (12): 1618.
DOI |
14 |
NI M , LEUNG M , LEUNG D . Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant[J]. International Journal of Hydrogen Energy, 2007, 32 (18): 4648- 4660.
DOI |
15 | STOOTS C M , OBRIEN J E , HERRING J S , et al. Syngas production via high-temperature coelectrolysis of steam and carbon dioxide[J]. Journal of Fuel Cell Science & Technology, 2009, 6 (1): 1- 12. |
16 | HAWKES G L , O'BRIEN J E , STOOTS C M , et al. CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy[J]. Nuclear Technology, 2005, 158 (2): 132- 144. |
17 | ATKINS P W , PAULA J C D . Physical Chemistry[M]. 7th ed Oxford: Oxford University Press, 2002. |
18 | 陆玉正. 太阳能与固体氧化物电解池联合制氢关键技术的研究[D]. 南京: 东南大学, 2017. |
LU Y Z. Research on key issue on hydrogen production combing solar energy and low temperature of solid oxide electrolysis cells[D]. Nanjing: Southeast University, 2017. | |
19 | EDUARDO H P , SINGH D , HUTTON P N , et al. A macro-level model for determining the performance characteristics of solid oxide fuel cells[J]. Journal of Power Sources, 2004, 138 (1/2): 174- 186. |
20 |
DIETHELM S , HERLE J V , MONTINARO D , et al. Electrolysis and co-electrolysis performance of SOE short stacks[J]. Fuel Cells, 2013, 13 (4): 631- 637.
DOI |
[1] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[2] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[3] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[4] | Lixin HUO, Richeng WANG. Study on Steam Supply Scheme of Seawater Desalination System Under Low Load Condition of Dual-Purpose Power and Water Plant Units [J]. Power Generation Technology, 2023, 44(5): 722-730. |
[5] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[6] | Yu LAN, Yan LONG, Zhehao ZHANG, Jingang RUAN. Technical and Economic Feasibility of Inter-Provincial Supply of Renewable Energy Hydrogen Production [J]. Power Generation Technology, 2023, 44(4): 473-483. |
[7] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[8] | Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU. Energy Saving Optimization of Extraction Steam Distribution for Cogeneration Units Under Carbon Neutral Background [J]. Power Generation Technology, 2023, 44(1): 85-93. |
[9] | Yuxing WANG, Yanjie ZHAO, Zhanye YANG, Hurun ZHANG, Manni LIN. Optimization Analysis of a Combined Ejector-cooling and Power System [J]. Power Generation Technology, 2022, 43(6): 942-950. |
[10] | Shaoxin WEI, Ying JIN, Jin WANG, Zhoufei YANG, Chaojie CUI, Weizhong QIAN. Prospect for Development Trend of Battery-Capacitor Technology [J]. Power Generation Technology, 2022, 43(5): 748-759. |
[11] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[12] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[13] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[14] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[15] | Fang FANG, Dongyang LIANG, Yajuan LIU, Yang HU, Jizhen LIU. Key Technologies for Intelligent Control and Operation and Maintenance of Offshore Wind Power [J]. Power Generation Technology, 2022, 43(2): 175-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||