Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 722-730.DOI: 10.12096/j.2096-4528.pgt.21091
• Power Generation and Environmental Protection • Previous Articles Next Articles
Lixin HUO1, Richeng WANG2
Received:
2022-11-30
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Lixin HUO, Richeng WANG. Study on Steam Supply Scheme of Seawater Desalination System Under Low Load Condition of Dual-Purpose Power and Water Plant Units[J]. Power Generation Technology, 2023, 44(5): 722-730.
参数 | 一期机组 | 二期机组 |
---|---|---|
铭牌功率/MW | 630 | 660 |
主蒸汽流量/(t∙h-1) | 1 874.62 | 1 822.85 |
主蒸汽压力/MPa | 16.70 | 24.20 |
主蒸汽温度/℃ | 538 | 566 |
再热蒸汽压力/MPa | 3.33 | 3.82 |
再热蒸汽温度/℃ | 538 | 566 |
额定背压/kPa | 4.00 | 4.90 |
额定给水温度/℃ | 276.40 | 275.10 |
热耗/[kJ∙(kW∙h)-1] | 7 775.00 | 7 507.10 |
Tab.1 Design parameters of rated working conditions of two stage units
参数 | 一期机组 | 二期机组 |
---|---|---|
铭牌功率/MW | 630 | 660 |
主蒸汽流量/(t∙h-1) | 1 874.62 | 1 822.85 |
主蒸汽压力/MPa | 16.70 | 24.20 |
主蒸汽温度/℃ | 538 | 566 |
再热蒸汽压力/MPa | 3.33 | 3.82 |
再热蒸汽温度/℃ | 538 | 566 |
额定背压/kPa | 4.00 | 4.90 |
额定给水温度/℃ | 276.40 | 275.10 |
热耗/[kJ∙(kW∙h)-1] | 7 775.00 | 7 507.10 |
工况 | 设计值/MW | 仿真值/MW | 相对误差/% |
---|---|---|---|
100%THA | 630.0 | 630.21 | 0.03 |
75%THA | 472.5 | 472.33 | -0.04 |
50%THA | 315.0 | 315.15 | 0.05 |
40%THA | 252.0 | 252.65 | 0.26 |
Tab. 2 Verification of model generation power accuracy of the first-stage unit
工况 | 设计值/MW | 仿真值/MW | 相对误差/% |
---|---|---|---|
100%THA | 630.0 | 630.21 | 0.03 |
75%THA | 472.5 | 472.33 | -0.04 |
50%THA | 315.0 | 315.15 | 0.05 |
40%THA | 252.0 | 252.65 | 0.26 |
工况 | 设计值/ [kJ⋅(kW⋅h)-1] | 仿真值/ [kJ⋅(kW⋅h)-1] | 相对误差/% |
---|---|---|---|
100%THA | 7 775.00 | 7 776.55 | 0.02 |
75%THA | 7 858.20 | 7 860.08 | 0.02 |
50%THA | 8 226.30 | 8 228.87 | 0.03 |
40%THA | 8 519.70 | 8 510.33 | -0.11 |
Tab. 3 Verification of model heat consumption rate accuracy of the first-stage unit
工况 | 设计值/ [kJ⋅(kW⋅h)-1] | 仿真值/ [kJ⋅(kW⋅h)-1] | 相对误差/% |
---|---|---|---|
100%THA | 7 775.00 | 7 776.55 | 0.02 |
75%THA | 7 858.20 | 7 860.08 | 0.02 |
50%THA | 8 226.30 | 8 228.87 | 0.03 |
40%THA | 8 519.70 | 8 510.33 | -0.11 |
工况 | 设计值/MW | 仿真值/MW | 相对误差/% |
---|---|---|---|
100%THA | 660 | 659.81 | -0.03 |
75%THA | 495 | 495.75 | 0.15 |
50%THA | 330 | 330.51 | 0.15 |
40%THA | 264 | 263.89 | -0.04 |
Tab. 4 Verification of model generation power accuracy of the second-stage unit
工况 | 设计值/MW | 仿真值/MW | 相对误差/% |
---|---|---|---|
100%THA | 660 | 659.81 | -0.03 |
75%THA | 495 | 495.75 | 0.15 |
50%THA | 330 | 330.51 | 0.15 |
40%THA | 264 | 263.89 | -0.04 |
工况 | 设计值/ [kJ∙(kW∙h)-1] | 仿真值/ [kJ∙(kW∙h)-1] | 相对误差/% |
---|---|---|---|
100%THA | 7 508.30 | 7 510.23 | 0.03 |
75%THA | 7 594.60 | 7 601.71 | 0.09 |
50%THA | 7 880.00 | 7 876.13 | -0.05 |
40%THA | 8 091.40 | 8 097.39 | 0.07 |
Tab. 5 Verification of model heat consumption rate accuracy of the second-stage unit
工况 | 设计值/ [kJ∙(kW∙h)-1] | 仿真值/ [kJ∙(kW∙h)-1] | 相对误差/% |
---|---|---|---|
100%THA | 7 508.30 | 7 510.23 | 0.03 |
75%THA | 7 594.60 | 7 601.71 | 0.09 |
50%THA | 7 880.00 | 7 876.13 | -0.05 |
40%THA | 8 091.40 | 8 097.39 | 0.07 |
参数 | 数值 |
---|---|
一期机组功率/MW | 252 |
一期机组再热热段压力/MPa | 1.36 |
一期机组再热热段温度/℃ | 519.80 |
一期机组中压缸排汽压力/MPa | 0.32 |
一期机组中压缸排汽温度/℃ | 315.68 |
一期机组低压缸进汽流量/(t/h) | 555.58 |
二期机组功率/MW | 264 |
二期机组再热热段压力/MPa | 1.55 |
二期机组再热热段温度/℃ | 542.90 |
Tab. 6 Parameters of low load coagulation working condition of case unit
参数 | 数值 |
---|---|
一期机组功率/MW | 252 |
一期机组再热热段压力/MPa | 1.36 |
一期机组再热热段温度/℃ | 519.80 |
一期机组中压缸排汽压力/MPa | 0.32 |
一期机组中压缸排汽温度/℃ | 315.68 |
一期机组低压缸进汽流量/(t/h) | 555.58 |
二期机组功率/MW | 264 |
二期机组再热热段压力/MPa | 1.55 |
二期机组再热热段温度/℃ | 542.90 |
项目 | 再热热段抽汽量/(t⋅h-1) | 再热热段抽汽温度/℃ | 再热热段抽汽压力/MPa | 煤耗量/(t⋅h-1) |
---|---|---|---|---|
#1机组 | 50 | 523.30 | 1.32 | 82.60 |
#2机组 | 50 | 523.30 | 1.32 | 82.60 |
#3机组 | 50 | 545.40 | 1.50 | 82.85 |
#4机组 | 50 | 545.40 | 1.50 | 82.85 |
全厂 | 200 | — | — | 330.90 |
Tab. 7 Coal consumption of scheme 1
项目 | 再热热段抽汽量/(t⋅h-1) | 再热热段抽汽温度/℃ | 再热热段抽汽压力/MPa | 煤耗量/(t⋅h-1) |
---|---|---|---|---|
#1机组 | 50 | 523.30 | 1.32 | 82.60 |
#2机组 | 50 | 523.30 | 1.32 | 82.60 |
#3机组 | 50 | 545.40 | 1.50 | 82.85 |
#4机组 | 50 | 545.40 | 1.50 | 82.85 |
全厂 | 200 | — | — | 330.90 |
参数 | 工作蒸汽 | 抽引蒸汽 | 混合蒸汽 |
---|---|---|---|
压力/MPa | 1.36 | 0.32 | 0.35 |
温度/℃ | 519.80 | 315.70 | 385.00 |
流量/(t⋅h-1) | 50.00 | 139.90 | 189.90 |
Tab. 8 Parameters of pressure matcher
参数 | 工作蒸汽 | 抽引蒸汽 | 混合蒸汽 |
---|---|---|---|
压力/MPa | 1.36 | 0.32 | 0.35 |
温度/℃ | 519.80 | 315.70 | 385.00 |
流量/(t⋅h-1) | 50.00 | 139.90 | 189.90 |
方案 | 供汽方式 | 全厂煤耗量/(t⋅h-1) |
---|---|---|
方案1 | 再热热段蒸汽减温减压后供汽 | 330.90 |
方案2 | 一期再热热段蒸汽抽引四抽蒸汽供汽 | 324.98 |
方案3 | 二期四抽蒸汽供汽 | 323.83 |
Tab. 9 Steam supply scheme and the corresponding coal consumption
方案 | 供汽方式 | 全厂煤耗量/(t⋅h-1) |
---|---|---|
方案1 | 再热热段蒸汽减温减压后供汽 | 330.90 |
方案2 | 一期再热热段蒸汽抽引四抽蒸汽供汽 | 324.98 |
方案3 | 二期四抽蒸汽供汽 | 323.83 |
1 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
2 | 朱维群,王倩 .碳中和目标下的化石能源利用新技术路线开发[J].发电技术,2021,42(1):3-7. doi:10.12096/j.2096-4528.pgt.21009 |
ZHU W Q, WANG Q .Development of new technological routes for fossil energy utilization under the goal of carbon neutral[J].Power Generation Technology,2021,42(1):3-7. doi:10.12096/j.2096-4528.pgt.21009 | |
3 | 林峰,肖立华,商浩亮,等 .“双碳”背景下能源互联网数字孪生系统的设计及应用[J].电力科学与技术学报,2022,37(1):29-34. |
LIN F, XIAO L H, SHANG H L,et al .Design and application of energy internet digital twin system under the background of “dual carbon”[J].Journal of Electric Power Science and Technology,2022,37(1):29-34. | |
4 | 童光毅 .基于双碳目标的智慧能源体系构建[J].智慧电力,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 |
TONG G Y .Construction of smart energy system based on dual carbon goal[J].Smart Power,2021,49(5):1-6. doi:10.3969/j.issn.1673-7598.2021.05.002 | |
5 | 和萍,宫智杰,靳浩然,等 .高比例可再生能源电力系统调峰问题综述[J].电力建设,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 |
HE P, GONG Z J, JIN H R,et al .Review of peak-shaving problem of electric power system with high proportion of renewable energy[J].Electric Power Construction,2022,43(11):108-121. doi:10.12204/j.issn.1000-7229.2022.11.011 | |
6 | 魏文,姜飞,戴双凤,等 .计及需求侧储能事故备用风险与火电机组深度调峰的经济优化研究[J].电力系统保护与控制,2022,50(10):153-162. |
WEI W, JIANG F, DAI S F,et al .Economic optimization of deep peak regulation of thermal power units taking into account the risk of emergency storage on the demand side[J].Power System Protection and Control,2022,50(10):153-162. | |
7 | 谭政宇,陈仕军,黄炜斌,等 .基于飞蛾火焰优化算法的火电调峰负荷分配研究[J].电网与清洁能源,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 |
TAN Z Y, CHEN S J, HUANG W B,et al .Research on peak load distribution of thermal power based on moth flame optimization algorithm[J].Power System and Clean Energy,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 | |
8 | 余小兵,沙德生,郑天帅,等 .宽负荷工业供汽方案及其热经济性研究[J].热力发电,2021,50(3):121-128. |
YU X B, SHA D S, ZHENG T S,et al .Study on industrial steam supply scheme and its thermal economy for wide load operation[J].Thermal Power Generation,2021,50(3):121-128. | |
9 | 张小波,宋萍,张文祥,等 .一种中压调节阀调整抽汽方式的探讨[J].东方汽轮机,2019(1):14-18. |
ZHANG X B, SONG P, ZHANG W X,et al .A method of adjusting steam exhaust of medium pressure regulating valve[J].Dongfang Steam Turbine,2019(1):14-18. | |
10 | 宗绪东,孙奉仲 .影响大型工业抽汽机组经济性的问题及优化研究[J].电站系统工程,2018,34(5):45-48. |
ZONG X D, SUN F Z .Research on the problems affecting the economy of large-scale industrial extract steam unit and its optimization[J].Power Station System Engineering,2018,34(5):45-48. | |
11 | 宋萍,邓凌宇 .超临界350 MW机组中联门隔级参调供热方案研究[J].中国设备工程,2018(11):168-169. |
SONG P, DENG L Y .Study on the heating scheme of the supercritical 350 MW unit in the central connecting door with steps[J].China Equipment Engineering,2018(11):168-169. | |
12 | 吕凯,王红宇,周佳,等 .热电联产机组电热煤特性研究[J].热力发电,2018,47(5):42-48. doi:10.19666/j.rlfd.201802018 |
LÜ K, WANG H Y, ZHOU J,et al .Study on the characteristics of electrothermal coal in cogeneration unit[J].Thermal Power Generation,2018,47(5):42-48. doi:10.19666/j.rlfd.201802018 | |
13 | 付怀仁,包伟伟,张敏,等 .当前主流供热改造技术的灵活性及经济性分析[J].热力透平,2019,48(2):99-104. |
FU H R, BAO W W, ZHANG M,et al .Flexibility and economic analysis of current mainstream heating transformation technology[J].Thermal Turbine,2019,48(2):99-104. | |
14 | 薛朝囡,杨荣祖,王汀,等 .汽轮机高低旁路联合供热在超临界350 MW机组上的应用[J].热力发电,2018,47(5):101-105. doi:10.19666/j.rlfd.201801029 |
XUE C N, YANG R Z, WANG T,et al .Application of combined heating of high and low bypass of steam turbine on 350 MW supercritical unit[J].Thermal Power Generation,2018,47(5):101-105. doi:10.19666/j.rlfd.201801029 | |
15 | 陈健,罗海华,应坚定,等 .纯凝机组多汽源工业供汽试验研究[J].华电技术,2017,39(8):17-20. doi:10.3969/j.issn.1674-1951.2017.08.005 |
CHEN J, LUO H H, YING J D,et al .Experimental study on multi-steam source industrial steam supply of pure condensing unit[J].Huadian Technology,2017,39(8):17-20. doi:10.3969/j.issn.1674-1951.2017.08.005 | |
16 | 冯知正,裴杰,王建勋,等 .600 MW机组中压工业供汽方案的研究[J].电力科技与环保,2019,35(5):49-51. doi:10.3969/j.issn.1674-8069.2019.05.015 |
FENG Z Z, PEI J, WANG J X,et al .Study on the medium voltage industrial steam supply scheme for 600 MW unit[J].Electric Power Technology and Environmental Protection,2019,35(5):49-51. doi:10.3969/j.issn.1674-8069.2019.05.015 | |
17 | 刘永林,黄嘉驷,屈杰,等 .大型燃煤发电机组实现宽负荷工业供汽策略研究[C]//全国火电机组灵活性改造技术交流研讨会.北京:中国电力出版社,2018:70-78. |
LIU Y L, HUANG J S, QU J,et al .Research on the strategy of realizing wide load industrial steam supply for large coal-fired generating units[C]//National Thermal Power Unit Flexibility Transformation Technology Exchange Seminar.Beijing:China Electric Power Press,2018:70-78. | |
18 | SHUICHI U .Diagnosis of thermal efficiency of power station by heat balance analysis method[C]//1999 Joint Power Generation Conference.Burlingame,California,USA:ASME,1999:236-245. |
19 | 李勇,曹丽华,林文彬 .等效热降法的改进计算方法[J].中国电机工程学报,2004,24(12):243-247. doi:10.3321/j.issn:0258-8013.2004.12.045 |
LI Y, CAO L H, LIN W B .Improved calculation method of equivalent heat drop method[J].Proceedings of the CSEE,2004,24(12):243-247. doi:10.3321/j.issn:0258-8013.2004.12.045 |
[1] | Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU. Energy Saving Optimization of Extraction Steam Distribution for Cogeneration Units Under Carbon Neutral Background [J]. Power Generation Technology, 2023, 44(1): 85-93. |
[2] | Yuxing WANG, Yanjie ZHAO, Zhanye YANG, Hurun ZHANG, Manni LIN. Optimization Analysis of a Combined Ejector-cooling and Power System [J]. Power Generation Technology, 2022, 43(6): 942-950. |
[3] | Kai XUE, Yihan WANG, Heng CHEN, Gang XU, Jing LEI. Thermodynamic Performance Analysis of a Parabolic Trough Solar-assisted Biomass-fired Cogeneration System [J]. Power Generation Technology, 2021, 42(6): 653-664. |
[4] | Dandan WANG, Yalou LI, Fang LI, Lu SUN. Process Modelling and Thermodynamic Analysis of Hydrogen Production by High Temperature Solid Oxide Electrolysis Under the Background of Carbon Neutrality [J]. Power Generation Technology, 2021, 42(5): 554-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||