Power Generation Technology ›› 2023, Vol. 44 ›› Issue (1): 85-93.DOI: 10.12096/j.2096-4528.pgt.21085
• Power Generation and Environmental Protection • Previous Articles Next Articles
Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU
Received:
2022-02-20
Published:
2023-02-28
Online:
2023-03-02
Supported by:
CLC Number:
Yuzhen HUANG, Yanqi CHEN, Zhicong WU, Gang XU, Tong LIU. Energy Saving Optimization of Extraction Steam Distribution for Cogeneration Units Under Carbon Neutral Background[J]. Power Generation Technology, 2023, 44(1): 85-93.
参数 | 数值 |
---|---|
电功率/MW | 630 |
主蒸汽压力/MPa | 16.7 |
主蒸汽温度/℃ | 538 |
再热蒸汽压力/MPa | 3.329 |
再热蒸汽温度/℃ | 538 |
背压/kPa | 4 |
给水温度/℃ | 276.4 |
热耗率/[kJ⋅(kW⋅h)-1] | 7 775.0 |
Tab. 1 Main design parameters of rated working conditions
参数 | 数值 |
---|---|
电功率/MW | 630 |
主蒸汽压力/MPa | 16.7 |
主蒸汽温度/℃ | 538 |
再热蒸汽压力/MPa | 3.329 |
再热蒸汽温度/℃ | 538 |
背压/kPa | 4 |
给水温度/℃ | 276.4 |
热耗率/[kJ⋅(kW⋅h)-1] | 7 775.0 |
参数 | 工况 | ||||
---|---|---|---|---|---|
THA | 75%THA | 50%THA | 40%THA | CQ250 t/h | |
设计值/MW | 630.00 | 472.50 | 315.00 | 252.00 | 601.80 |
仿真值/MW | 630.99 | 472.64 | 315.68 | 253.05 | 602.26 |
相对误差/% | 0.16 | 0.03 | 0.22 | 0.42 | 0.08 |
Tab. 2 Verification of generating power
参数 | 工况 | ||||
---|---|---|---|---|---|
THA | 75%THA | 50%THA | 40%THA | CQ250 t/h | |
设计值/MW | 630.00 | 472.50 | 315.00 | 252.00 | 601.80 |
仿真值/MW | 630.99 | 472.64 | 315.68 | 253.05 | 602.26 |
相对误差/% | 0.16 | 0.03 | 0.22 | 0.42 | 0.08 |
参数 | 工况 | ||||
---|---|---|---|---|---|
THA | 75%THA | 50%THA | 40%THA | CQ250 t/h | |
设计值/[kJ⋅(kW⋅h)-1] | 7 775.00 | 7 858.20 | 8 226.30 | 8 519.70 | 7 212.50 |
仿真值/[kJ⋅(kW⋅h)-1] | 7 777.85 | 7 870.10 | 8 219.10 | 8 496.38 | 7 313.92 |
相对误差/% | 0.04 | 0.15 | -0.09 | -0.27 | 1.41 |
Tab. 3 Verification of heat loss rate
参数 | 工况 | ||||
---|---|---|---|---|---|
THA | 75%THA | 50%THA | 40%THA | CQ250 t/h | |
设计值/[kJ⋅(kW⋅h)-1] | 7 775.00 | 7 858.20 | 8 226.30 | 8 519.70 | 7 212.50 |
仿真值/[kJ⋅(kW⋅h)-1] | 7 777.85 | 7 870.10 | 8 219.10 | 8 496.38 | 7 313.92 |
相对误差/% | 0.04 | 0.15 | -0.09 | -0.27 | 1.41 |
供热抽汽量/(t⋅h-1) | 蒸汽参数 | |||
---|---|---|---|---|
主汽量/(t⋅h-1) | 主汽压力/MPa | 中排压力/MPa | 低压缸进汽量/(t⋅h-1) | |
0 | 1 266.721 | 15.026 | 0.543 | 938.463 |
40 | 1 289.247 | 15.282 | 0.523 | 908.570 |
80 | 1 311.070 | 15.529 | 0.503 | 878.166 |
120 | 1 332.170 | 15.768 | 0.483 | 847.235 |
160 | 1 352.821 | 15.939 | 0.462 | 815.987 |
200 | 1 373.386 | 15.969 | 0.442 | 784.695 |
240 | 1 393.098 | 15.998 | 0.421 | 752.827 |
280 | 1 411.898 | 16.025 | 0.401 | 720.339 |
320 | 1 429.723 | 16.051 | 0.380 | 687.193 |
360 | 1 447.132 | 16.077 | 0.359 | 653.764 |
Tab. 4 Variation of main steam parameters under 70%THA extraction condition
供热抽汽量/(t⋅h-1) | 蒸汽参数 | |||
---|---|---|---|---|
主汽量/(t⋅h-1) | 主汽压力/MPa | 中排压力/MPa | 低压缸进汽量/(t⋅h-1) | |
0 | 1 266.721 | 15.026 | 0.543 | 938.463 |
40 | 1 289.247 | 15.282 | 0.523 | 908.570 |
80 | 1 311.070 | 15.529 | 0.503 | 878.166 |
120 | 1 332.170 | 15.768 | 0.483 | 847.235 |
160 | 1 352.821 | 15.939 | 0.462 | 815.987 |
200 | 1 373.386 | 15.969 | 0.442 | 784.695 |
240 | 1 393.098 | 15.998 | 0.421 | 752.827 |
280 | 1 411.898 | 16.025 | 0.401 | 720.339 |
320 | 1 429.723 | 16.051 | 0.380 | 687.193 |
360 | 1 447.132 | 16.077 | 0.359 | 653.764 |
抽汽量/ (t⋅h-1) | 煤耗增量/(t⋅h-1) | |||
---|---|---|---|---|
90%THA | 80%THA | 70%THA | 60%THA | |
0 | 0 | 0 | 0 | 0 |
20 | 1.125 | 1.106 | 1.031 | 1.013 |
40 | 2.236 | 2.196 | 2.045 | 2.007 |
60 | 3.333 | 3.270 | 3.040 | 2.980 |
80 | 4.415 | 4.327 | 4.018 | 3.932 |
100 | 5.482 | 5.369 | 4.978 | 4.864 |
120 | 6.537 | 6.378 | 5.920 | 5.774 |
140 | 7.581 | 7.364 | 6.843 | 6.663 |
160 | 8.609 | 8.333 | 7.763 | 7.530 |
180 | 9.625 | 9.286 | 8.676 | 8.393 |
200 | 10.630 | 10.222 | 9.568 | 9.244 |
Tab. 5 Change of coal consumption increment of single unit with heat extraction steam under different loads
抽汽量/ (t⋅h-1) | 煤耗增量/(t⋅h-1) | |||
---|---|---|---|---|
90%THA | 80%THA | 70%THA | 60%THA | |
0 | 0 | 0 | 0 | 0 |
20 | 1.125 | 1.106 | 1.031 | 1.013 |
40 | 2.236 | 2.196 | 2.045 | 2.007 |
60 | 3.333 | 3.270 | 3.040 | 2.980 |
80 | 4.415 | 4.327 | 4.018 | 3.932 |
100 | 5.482 | 5.369 | 4.978 | 4.864 |
120 | 6.537 | 6.378 | 5.920 | 5.774 |
140 | 7.581 | 7.364 | 6.843 | 6.663 |
160 | 8.609 | 8.333 | 7.763 | 7.530 |
180 | 9.625 | 9.286 | 8.676 | 8.393 |
200 | 10.630 | 10.222 | 9.568 | 9.244 |
1 | 王泽众,黄平瑞,魏高升,等 .太阳能热发电固-气两相化学储热技术研究进展[J].发电技术,2021,42(2):238-246. |
WANG Z Z, HUANG P R, WEI G S,et al .Research progress of solid-gas two-phase chemical heat storage technology for solar thermal power generation[J].Power Generation Technology,2021,42(2):238-246. | |
2 | 黄畅,张攀,王卫良,等 .燃煤发电产业升级支撑我国节能减排与碳中和国家战略[J].热力发电,2021,50(40):1-6. |
HUANG C, ZHANG P, WANG W L,et al .China’s national strategy of energy conservation,emission reduction and carbon neutrality based on the upgrading of coal-fired power generation industry[J].Thermal Power Generation,2021,50(40):1-6. | |
3 | 薛恒 .电力行业节能减排及低碳化发展分析[J].应用能源技术,2021(1):49-51. |
XUE H .Energy conservation and emission reduction and low-carbon development analysis of power industry[J].Applied Energy Technology,2021(1):49-51. | |
4 | 李好管 .“十三五”规划关于中国能源、煤炭工业、煤炭深加工产业发展的政策导向(上)[J].煤化工,2017,45(3):1-6. doi:10.3969/j.issn.1005-9598.2017.03.001 |
LI H G .Policy orientation about development of China’s energy,coal industry and deep coal processing industry in the Thirteenth Five-Year Plan (1)[J].Coal Chemical Industry,2017,45(3):1-6. doi:10.3969/j.issn.1005-9598.2017.03.001 | |
5 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
6 | 林伯强 .“十三五”时期中国电力发展成就及“十四五”展望[J].中国电业,2020(12):22-23. |
LIN B Q .China’s electric power development achievements during the Thirteenth Five-Year Plan period and the outlook of the Fourteenth Five-Year Plan[J].Power Industry of China,2020(12):22-23. | |
7 | HIMANSHU A, NITIN N, DHILLON J S .Unit commitment considering dual-mode combined heat and power generating units using integrated optimization technique[J].Energy Conversion and Management,2018,171:984-1001. doi:10.1016/j.enconman.2018.06.054 |
8 | 郭建,周建新,于海泉,等 .双抽可调供热机组供热汽源优化研究[J].热能动力工程,2020,35(10):10-17. |
GUO J, ZHOU J X, YU H Q,et al .Study on the optimization of heating steam sources for double extraction adjustable heating unit[J].Journal of Engineering for Thermal Energy and Power,2020,35(10):10-17. | |
9 | 许朋江,徐睿,邓佳,等 .330 MW机组采暖抽汽对发电热经济性的影响分析[J].中国电机工程学报,2020,40(19):6257-6264. |
XU P J, XU R, DENG J,et al .Analysis on the influence of heating and steam extraction on the thermal economy of 330 MW unit[J].Proceedings of the CSEE,2020,40(19):6257-6264. | |
10 | 李岩,米培源,李文涛,等 .大型机组乏汽余热利用的热电联产供热系统全工况优化[J].中国电机工程学报,2018,38(16):4815-4822. |
LI Y, MI P Y, LI W T,et al .Full working condition optimization of combined heat and power heating system for large-scale units with waste heat utilization of steam[J].Proceedings of the CSEE,2018,38(16):4815-4822. | |
11 | 柏春光,蔡鼎,张可浩,等 .抽汽供热机组节能优化潜力的综合调研分析[J].节能技术,2014,32(1):28-31. |
BAI C G, CAI D, ZHANG K H,et al .Comprehensive investigation and analysis of energy saving optimization potential of extraction steam heating unit[J].Energy Saving Technology,2014,32(1):28-31. | |
12 | 帅挽澜,朱自伟,李雪萌,等 .考虑风电消纳的综合能源系统“源-网-荷-储”协同优化运行[J].电力系统保护与控制,2021,49(19):18-26. doi:10.19783/j.cnki.pspc.210037 |
SHUAI W L, ZHU Z W, LI X M,et al .“Source-network-load-storage” coordinated optimization operation for an integrated energy system considering wind power consumption[J].Power System Protection and Control,2021,49(19):18-26. doi:10.19783/j.cnki.pspc.210037 | |
13 | 王珊,刘明,严俊杰 .采用粒子群算法的热电厂热电负荷分配优化[J].西安交通大学学报,2019,53(9):159-166. doi:10.7652/xjtuxb201909021 |
WANG S, LIU M, YAN J J .Optimization of thermoelectric load distribution in thermal power plant based on particle swarm optimization algorithm[J].Journal of Xi’an Jiaotong University,2019,53(9):159-166. doi:10.7652/xjtuxb201909021 | |
14 | 唐家裕,付林,狄洪发 .不同类型供热机组负荷优化的研究[J].东北电力技术,2007(8):10-13. doi:10.3969/j.issn.1004-7913.2007.08.004 |
TANG J Y, FU L, DI H F .Research on load optimization of different types of heating units[J].Northeast Electric Power Technology,2007(8):10-13. doi:10.3969/j.issn.1004-7913.2007.08.004 | |
15 | 金建国,国文学,姜铁骝,等 .供热机组间热电负荷最佳分配的研究[J].汽轮机技术,2007,49(2):90-92. doi:10.3969/j.issn.1001-5884.2007.02.004 |
JIN J G, GUO W X, JIANG T L,et al .Research on heat and power load optimizing distribution for heat supply unit[J].Turbine Technology,2007,49(2):90-92. doi:10.3969/j.issn.1001-5884.2007.02.004 | |
16 | 黄廷辉,柴胜凯,庞顺,等 .热电联产机组热、电负荷优化分配[J].热力发电,2010,39(12):1-4. doi:10.3969/j.issn.1002-3364.2010.12.001 |
HUANG T H, CHAI S K, PANG S,et al .Optimization of thermal and electrical load distribution for the co-generation unit[J].Thermal Power Generation,2010,39(12):1-4. doi:10.3969/j.issn.1002-3364.2010.12.001 | |
17 | 吴龙,袁奇,刘昕 .供热机组热电负荷最佳分配方法分析[J].中国电机工程学报,2012,32(35):6-12. |
WU L, YUAN Q, LIU X .Research on the scheme of optimal load distribution for cogeneration units[J].Proceedings of the CSEE,2012,32(35):6-12. | |
18 | 冉鹏,张树芳 .基于遗传算法的热电厂负荷优化计算方法[J].汽轮机技术,2006,48(1):17-20. doi:10.3969/j.issn.1001-5884.2006.01.006 |
RAN P, ZHANG S F .Genetic algorithm for thermal power generating unit load optimal distribution[J].Turbine Technology,2006,48(1):17-20. doi:10.3969/j.issn.1001-5884.2006.01.006 | |
19 | 温志刚,王勇,骆贵兵,等 .模拟退火算法在供热机组负荷分配中的应用研究[J].热力发电,2003,32(7):18-20. doi:10.3969/j.issn.1002-3364.2003.07.005 |
WEN Z G, WANG Y, LUO G B,et al .A study on application of simulated annealing algorithm in load-distribution among heat-supplying units[J].Thermal Power Generation,2003,32(7):18-20. doi:10.3969/j.issn.1002-3364.2003.07.005 | |
20 | 谢毅霏,卫鹏杰,张建伟 .动态寻优法在供热机组热电负荷优化分配中的应用[J].山西电力,2014(1):42-44. doi:10.3969/j.issn.1671-0320.2014.01.012 |
XIE Y F, WEI P J, ZHANG J W .Application of dynamic optimization method in the optimization of heat and power load distribution of heating unit[J].Shanxi Electric Power,2014(1):42-44. doi:10.3969/j.issn.1671-0320.2014.01.012 | |
21 | 盛虎,谭延嘉,王国强 .基于配额优化的不同类型机组热电负荷分配研究[J].节能,2020,39(11):31-34. doi:10.3969/j.issn.1004-7948.2020.11.009 |
SHENG H, TAN Y J, WANG G Q .Research on thermoelectric load distribution of different types of units based on quota optimization[J].Energy Conservation,2020,39(11):31-34. doi:10.3969/j.issn.1004-7948.2020.11.009 | |
22 | 郭民臣,樊雪,彭新飞,等 .改进粒子群算法应用于热电联产负荷优化分配[J].汽轮机技术,2013,55(3):229-231. doi:10.3969/j.issn.1001-5884.2013.03.020 |
GUO M C, FAN X, PENG X F,et al .Application of improved particle swarm optimization to combined heat and power optimal load dispatch[J].Turbine Technology,2013,55(3):229-231. doi:10.3969/j.issn.1001-5884.2013.03.020 | |
23 | 谭政宇,陈仕军,黄炜斌,等 .基于飞蛾火焰优化算法的火电调峰负荷分配研究[J].电网与清洁能源,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 |
TAN Z Y, CHEN S J, HUANG W B .Research on peak load distribution of thermal power based on moth flame optimization algorithm[J].Power System and Clean Energy,2021,37(4):47-52. doi:10.3969/j.issn.1674-3814.2021.04.007 | |
24 | 赵兵,景杰 .“碳达峰、碳中和”目标下火力发电行业的转型与发展[J].节能与环保,2021(5):32-33. |
ZHAO B, JING J .Transformation and development of thermal power industry under the goal of “carbon peak,carbon neutral”[J].Energy Conservation and Environmental Protection,2021(5):32-33. | |
25 | 程堃,万祥,孙海军,等 .弗留格尔公式的改进及其在汽轮机湿蒸汽级组中的应用[J].汽轮机技术,2020,62(2):104-106. doi:10.3969/j.issn.1001-5884.2020.02.008 |
CHENG K, WAN X, SUN H J,et al .The improvement of Flugel formula and its application in wet steam stage groups of steam turbine[J].Turbine Technology,2020,62(2):104-106. doi:10.3969/j.issn.1001-5884.2020.02.008 | |
26 | 陈保华 .火电机组热力系统优化及节能改造研究[D].北京:华北电力大学,2006. |
CHEN B H .Research on thermal system optimization and energy saving transformation of thermal power unit [D].Beijing:North China Electric Power University,2006. | |
27 | 郭民臣,魏楠 .热电厂供热成本分摊新方法:热耗变换系数法“好处归热法”的新解与理论证明[J].中国电机工程学报,2000,20(11):85-88. |
GUO M C, WEI N .A new approach to cost sharing for a cogeneration plant:method of heat rate transformation coefficient[J].Proceedings of the CSEE,2000,20(11):85-88. |
[1] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[2] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[3] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[4] | Lixin HUO, Richeng WANG. Study on Steam Supply Scheme of Seawater Desalination System Under Low Load Condition of Dual-Purpose Power and Water Plant Units [J]. Power Generation Technology, 2023, 44(5): 722-730. |
[5] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[6] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[7] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[8] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[9] | Yuxing WANG, Yanjie ZHAO, Zhanye YANG, Hurun ZHANG, Manni LIN. Optimization Analysis of a Combined Ejector-cooling and Power System [J]. Power Generation Technology, 2022, 43(6): 942-950. |
[10] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[11] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[12] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
[13] | Hu GAO, Fan LIU, Hai LI. Opportunities, Challenges and Application Prospects of Ammonia Fuel Under the Target of Carbon Neutrality [J]. Power Generation Technology, 2022, 43(3): 462-467. |
[14] | Kai ZHU, Yanhong ZHANG. Research on Application of Hydrogen in Power Industry Under “Double Carbon” Circumstance [J]. Power Generation Technology, 2022, 43(1): 65-72. |
[15] | Lin LI, Tongyu LIU, Shuang LI, Yixiang SHI, Ningsheng CAI. Research Progress of Hydrogen Production by Methanol Reforming for Fuel Cell Power Generation [J]. Power Generation Technology, 2022, 43(1): 44-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||