Power Generation Technology ›› 2024, Vol. 45 ›› Issue (6): 1114-1120.DOI: 10.12096/j.2096-4528.pgt.23171
• Carbon Neutrality • Previous Articles
Changling LI1,2, Xiqiang CHANG3, Hao LU1
Received:
2023-12-19
Revised:
2024-01-12
Published:
2024-12-31
Online:
2024-12-30
Contact:
Hao LU
Supported by:
CLC Number:
Changling LI, Xiqiang CHANG, Hao LU. Analysis and Forecast of the Shift From Double Control of Energy Consumption to Double Control of Carbon Emissions in Xinjiang[J]. Power Generation Technology, 2024, 45(6): 1114-1120.
类别 | 电解铝 | 钢铁 | 多晶硅 | 煤制烯烃 | 再生铝 | 番茄加工 |
---|---|---|---|---|---|---|
产品终端价格/(元/t) | 14 450 | 3 677 | 55 000 | 8 200 | 19 000 | 6 000 |
产品原料成本/(元/t) | 5 495 | 2 015 | 22 000 | 1 604.7 | 10 000 | 500 |
产品用电成本/(元/t) | 4 495.5 | 500.0 | 21 645.0 | 432.9 | 216.0 | 60.0 |
产品总成本/(元/t) | 11 700 | 2 792 | 44 300 | 6 210 | 15 000 | 4 800 |
税金及附加比重/% | 10 | 10 | 10 | 10 | 10 | 10 |
各项期间费用比重/% | 40 | 40 | 40 | 40 | 40 | 40 |
最低利润率/% | 8 | 8 | 8 | 8 | 8 | 8 |
产品价格涨幅/% | -1 | -1 | -1 | -1 | -1 | -1 |
原材料价格涨幅/% | 1 | 1 | 1 | 1 | 1 | 1 |
电价/[元/(kW⋅h)] | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 |
产品利润率/% | 9.52 | 12.03 | 9.73 | 12.13 | 10.53 | 10.00 |
利润率对售价敏感度 | 0.626 2 | 0.000 2 | 0.164 1 | 0.000 1 | 0.470 9 | 0.000 2 |
利润率对原料敏感度 | -0.380 | -0.548 | -0.400 | -0.196 | -0.526 | -0.083 |
利润率对电价敏感度 | -0.311 1 | -0.136 0 | -0.393 5 | -0.052 8 | -0.011 4 | -0.010 0 |
电价承受力/% | 0.74 | 19.17 | 1.08 | 57.96 | 97.22 | 101.67 |
最高电价/[元/(kW⋅h)] | 0.350 | 0.415 | 0.352 | 0.550 | 0.686 | 0.702 |
Tab. 1 Carrying capacity of electricity prices in key sectors
类别 | 电解铝 | 钢铁 | 多晶硅 | 煤制烯烃 | 再生铝 | 番茄加工 |
---|---|---|---|---|---|---|
产品终端价格/(元/t) | 14 450 | 3 677 | 55 000 | 8 200 | 19 000 | 6 000 |
产品原料成本/(元/t) | 5 495 | 2 015 | 22 000 | 1 604.7 | 10 000 | 500 |
产品用电成本/(元/t) | 4 495.5 | 500.0 | 21 645.0 | 432.9 | 216.0 | 60.0 |
产品总成本/(元/t) | 11 700 | 2 792 | 44 300 | 6 210 | 15 000 | 4 800 |
税金及附加比重/% | 10 | 10 | 10 | 10 | 10 | 10 |
各项期间费用比重/% | 40 | 40 | 40 | 40 | 40 | 40 |
最低利润率/% | 8 | 8 | 8 | 8 | 8 | 8 |
产品价格涨幅/% | -1 | -1 | -1 | -1 | -1 | -1 |
原材料价格涨幅/% | 1 | 1 | 1 | 1 | 1 | 1 |
电价/[元/(kW⋅h)] | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 | 0.347 9 |
产品利润率/% | 9.52 | 12.03 | 9.73 | 12.13 | 10.53 | 10.00 |
利润率对售价敏感度 | 0.626 2 | 0.000 2 | 0.164 1 | 0.000 1 | 0.470 9 | 0.000 2 |
利润率对原料敏感度 | -0.380 | -0.548 | -0.400 | -0.196 | -0.526 | -0.083 |
利润率对电价敏感度 | -0.311 1 | -0.136 0 | -0.393 5 | -0.052 8 | -0.011 4 | -0.010 0 |
电价承受力/% | 0.74 | 19.17 | 1.08 | 57.96 | 97.22 | 101.67 |
最高电价/[元/(kW⋅h)] | 0.350 | 0.415 | 0.352 | 0.550 | 0.686 | 0.702 |
1 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China’s power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
2 | 李汪繁,吴何来 .双碳目标下我国碳市场发展分析及建议[J].南方能源建设,2022,9(4):118-126. doi:10.16516/j.gedi.issn2095-8676.2022.04.015 |
LI W F, WU H L .Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals[J].Southern Energy Construction,2022,9(4):118-126. doi:10.16516/j.gedi.issn2095-8676.2022.04.015 | |
3 | 单思珂,刘含笑,刘美玲,等 .我国火电行业碳足迹评估综述[J/OL].发电技术,2023:1-14.(2023-11-17).. |
SHAN S K, LIU H X, LIU M L,et al .Carbon footprint for thermal power industry in China:a review[J/OL].Power Generation Technology,2023:1-14.(2023-11-17).. | |
4 | 吴晓刚,唐家俊,吴新华,等 .“双碳” 目标下虚拟电厂关键技术与建设现状[J].浙江电力,2022,41(10):64-71. |
WU X G, TANG J J, WU X H,et al .Key technologies and present situation of virtual power plant under “dual-carbon” goals[J].Zhejiang Electric Power,2022,41(10):64-71. | |
5 | 傅旭,王莹玉,张雨津 .新疆电网调峰需求及储能电源配置[J].分布式能源,2022,7(5):63-68. |
FU X, WANG Y Y, ZHANG Y J .Peak regulating demand and energy storage power supply configuration of Xinjiang power grid[J].Distributed Energy,2022,7(5):63-68. | |
6 | 亢朋朋,王啸天,陈铨艺,等 .考虑碳交易的综合能源系统在不同配置情景下的运行分析[J].智慧电力,2023,51(4):16-22. doi:10.3969/j.issn.1673-7598.2023.04.003 |
KANG P P, WANG X T, CHEN Q Y,et al .Operation analysis of integrated energy system considering carbon trading under different configuration scenarios[J].Smart Power,2023,51(4):16-22. doi:10.3969/j.issn.1673-7598.2023.04.003 | |
7 | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
XU H H, SHAO G P, E C L,et al .Research on China’s future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
8 | 胡珺,黄楠,沈洪涛 .市场激励型环境规制可以推动企业技术创新吗?基于中国碳排放权交易机制的自然实验[J].金融研究,2020(1):171-189. |
HU J, HUANG N, SHEN H T .Can market-incentive environmental regulation promote corporate innovation? A natural experiment based on China’s carbon emissions trading mechanism[J].Journal of Financial Research,2020(1):171-189. | |
9 | 刘传明,孙喆,张瑾 .中国碳排放权交易试点的碳减排政策效应研究[J].中国人口·资源与环境,2019,29(11):49-58. |
LIU C M, SUN Z, ZHANG J .Research on the effect of carbon emission reduction policy in China’s carbon emissions trading pilot[J].China Population,Resources and Environment,2019,29(11):49-58. | |
10 | 沈洪涛,黄楠,刘浪 .碳排放权交易的微观效果及机制研究[J].厦门大学学报(哲学社会科学版),2017(1):13-22. |
SHEN H T, HUANG N, LIU L .A study of the micro-effect and mechanism of the carbon emission trading scheme[J].Journal of Xiamen University (Arts & Social Sciences),2017(1):13-22. | |
11 | 余碧莹,赵光普,安润颖,等 .碳中和目标下中国碳排放路径研究[J].北京理工大学学报(社会科学版),2021,23(2):17-24. |
YU B Y, ZHAO G P, AN R Y,et al .Research on China’s CO2 emission pathway under carbon neutral target[J].Journal of Beijing Institute of Technology (Social Sciences Edition),2021,23(2):17-24. | |
12 | 黄蕊,王铮,丁冠群,等 .基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J].地理研究,2016,35(4):781-789. |
HUANG R, WANG Z, DING G Q,et al .Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu Province based on STIRPAT model[J].Geographical Research,2016,35(4):781-789. | |
13 | 张腾飞,杨俊,盛鹏飞 .城镇化对中国碳排放的影响及作用渠道[J].中国人口·资源与环境,2016,26(2):47-57. |
ZHANG T F, YANG J, SHENG P F .The impacts and channels of urbanization on carbon dioxide emissions in China[J].China Population,Resources and Environment,2016,26(2):47-57. | |
14 | 邵帅,张曦,赵兴荣 .中国制造业碳排放的经验分解与达峰路径:广义迪氏指数分解和动态情景分析[J].中国工业经济,2017(3):44-63. |
SHAO S, ZHANG X, ZHAO X R .Empirical decomposition and peaking pathway of carbon dioxide emissions of China’s manufacturing sector:generalized divisia index method and dynamic scenario analysis[J].China Industrial Economics,2017(3):44-63. | |
15 | 任晓松,刘宇佳,赵国浩 .经济集聚对碳排放强度的影响及传导机制[J].中国人口·资源与环境,2020,30(4):95-106. |
REN X S, LIU Y J, ZHAO G H .The impact and transmission mechanism of economic agglomeration on carbon intensity[J].China Population,Resources and Environment,2020,30(4):95-106. | |
16 | 中国建筑节能协会,重庆大学城乡建设与发展研究院 .中国建筑能耗与碳排放研究报告(2022年)[J].建筑,2023(2):57-69. doi:10.3969/j.issn.0577-7429.2023.2.jz202302019 |
China Association of Building Energy Efficiency,Institute of Urbanrural Construction and Development of Chongqing University .Research report on building energy consumption and carbon emissions in China (2022)[J].Construction and Architecture,2023(2):57-69. doi:10.3969/j.issn.0577-7429.2023.2.jz202302019 | |
17 | 王少剑,苏泳娴,赵亚博 .中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J].地理学报,2018,73(3):414-428. doi:10.11821/dlxb201803003 |
WANG S J, SU Y X, ZHAO Y B .Regional inequality,spatial spillover effects and influencing factors of China’s city-level energy-related carbon emissions[J].Acta Geographica Sinica,2018,73(3):414-428. doi:10.11821/dlxb201803003 | |
18 | 李金铠,马静静,魏伟 .中国八大综合经济区能源碳排放效率的区域差异研究[J].数量经济技术经济研究,2020,37(6):109-129. |
LI J K, MA J J, WEI W .Study on regional differences of energy carbon emission efficiency in eight economic areas of China[J].The Journal of Quantitative & Technical Economics,2020,37(6):109-129. | |
19 | 汤芳,代红才,张宁,等 .能耗双控向碳排放双控转变影响分析及推进路径设计[J].中国电力,2023,56(12):255-261. |
TANG F, DAI H C, ZHANG N,et al .Effect analysis and promotion path design for transformation from energy consumption “dual control” to carbon “dual control”[J].Electric Power,2023,56(12):255-261. | |
20 | 粟世玮,张谦,熊炜,等 .含高渗透可再生能源的动态网络重构与无功电压调整协同优化[J].电网与清洁能源,2023,39(1):100-110. doi:10.3969/j.issn.1674-3814.2023.01.014 |
SU S W, ZHANG Q, XIONG W,et al .Coordination optimization of dynamic network reconfiguration and reactive power voltage regulation with high penetration renewable energy generation[J].Power System and Clean Energy,2023,39(1):100-110. doi:10.3969/j.issn.1674-3814.2023.01.014 | |
21 | 丁峰,李晓刚,梁泽琪,等 .国外可再生能源发展经验及其对我国相关扶持政策的启示[J].电力建设,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 |
DING F, LI X G, LIANG Z Q,et al .Review of foreign experience in promoting renewable energy development and inspiration to China[J].Electric Power Construction,2022,43(9):1-11. doi:10.12204/j.issn.1000-7229.2022.09.001 | |
22 | 黎立丰,刘春晓,朱浩骏,等 .考虑网络安全约束的可再生能源消纳能力评估方法[J].电力科学与技术学报,2023,38(4):162-168. |
LI L F, LIU C X, ZHU H J,et al .Absorptive capability evaluation method of renewable energy considering security constraints of power grid[J].Journal of Electric Power Science and Technology,2023,38(4):162-168. |
[1] | Dongqing ZHANG, Tiezheng JIN, Lei ZHANG. Comprehensive Optimization of the Cold End of 1 000 MW Ultra-Supercritical Unit Based on Pump Frequency Conversion [J]. Power Generation Technology, 2024, 45(6): 1095-1104. |
[2] | Tingting XIE, Youyuan SUN, Zhen GUO, Mingguang SONG. Summary of Research and Application of Continuous Monitoring Technology for Carbon Emissions From Thermal Power Units [J]. Power Generation Technology, 2024, 45(5): 919-928. |
[3] | Ruowei WANG, Yinxuan LI, Weichun GE, Shitan ZHANG, Chuang LIU, Shuai CHU. Summary of Desert Photovoltaic Power Transmission Technology [J]. Power Generation Technology, 2024, 45(1): 32-41. |
[4] | Daogang PENG, Jijun SHUI, Danhao WANG, Huirong ZHAO. Review of Virtual Power Plant Under the Background of “Dual Carbon” [J]. Power Generation Technology, 2023, 44(5): 602-615. |
[5] | Ning ZHANG, Hao ZHU, Lingxiao YANG, Cungang HU. Optimal Scheduling Strategy of Multi-Energy Complementary Virtual Power Plant Considering Renewable Energy Consumption [J]. Power Generation Technology, 2023, 44(5): 625-633. |
[6] | Haibin YU, Yuchen ZHANG, Yangyang LIU, Zengjie LU, Jinde WENG. Optimal Dispatching Bidding Strategy of Multi-Agent Virtual Power Plant Participating in Electricity Market Under Carbon Trading Mechanism [J]. Power Generation Technology, 2023, 44(5): 634-644. |
[7] | Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN. Analysis of Energy Consumption Characteristics of Carbon Capture System in Coupled Membrane Condenser [J]. Power Generation Technology, 2023, 44(5): 667-673. |
[8] | Hanxiao LIU. Energy Saving and Carbon Reduction Analysis of Electrostatic Precipitator Under Double Carbon Background [J]. Power Generation Technology, 2023, 44(5): 738-744. |
[9] | Donghui CAO, Dongmei DU, Qing HE. Summary of Hydrogen Energy Storage Safety and Its Detection Technology [J]. Power Generation Technology, 2023, 44(4): 431-442. |
[10] | Honghua XU, Guiping SHAO, Chunliang E, Jindong GUO. Research on China’s Future Energy System and the Realistic Path of Energy Transformation [J]. Power Generation Technology, 2023, 44(4): 484-491. |
[11] | Lianpeng ZHAO, Zhenyang ZHANG, Gang AN, Shenyin YANG. Progress in Hydrogen Liquefaction Technology With Mixed Refrigerant [J]. Power Generation Technology, 2023, 44(3): 331-339. |
[12] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[13] | Huan ZHANG, Li WANG, Yi YE, Xinglei ZHAO. Study on CO2 Absorbent of DETA and TEA Mixed Amine Solution [J]. Power Generation Technology, 2022, 43(4): 609-617. |
[14] | Xiao YU, Guangquan BU, Shanshan WANG. Research on Transient AC Overvoltage Suppression Strategy of Islanded Wind Power Transmission via VSC-HVDC [J]. Power Generation Technology, 2022, 43(4): 618-625. |
[15] | Weizhong FENG, Li LI. Research and Practice on Development Path of Low-carbon, Zero-carbon and Negative Carbon Transformation of Coal-fired Power Units Under “Double Carbon” Targets [J]. Power Generation Technology, 2022, 43(3): 452-461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||