Power Generation Technology ›› 2023, Vol. 44 ›› Issue (5): 667-673.DOI: 10.12096/j.2096-4528.pgt.22076
• Carbon Neutrality • Previous Articles Next Articles
Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN
Received:
2023-04-13
Published:
2023-10-31
Online:
2023-10-30
Supported by:
CLC Number:
Rongrong ZHAI, Qing WEI, Lingjie FENG, Gexun SUN. Analysis of Energy Consumption Characteristics of Carbon Capture System in Coupled Membrane Condenser[J]. Power Generation Technology, 2023, 44(5): 667-673.
参数 | 数值 |
---|---|
贫液温度/℃ | 39.7 |
贫液MEA质量分数/% | 26.2 |
贫液CO2负荷/(mol/mol) | 0.314 |
入口烟气温度/℃ | 61.8 |
入口气体压力/kPa | 108.3 |
入口烟气流量/(kg/h) | 598 |
入口烟气CO2体积分数/% | 11.1 |
入口烟气H2O体积分数/% | 5.5 |
入口烟气O2体积分数/% | 6 |
入口烟气N2体积分数/% | 77.4 |
冷凝器温度/℃ | 20.7 |
解吸塔顶压力/kPa | 200.5 |
Tab. 1 Conditions of CO2 absorption and desorption test
参数 | 数值 |
---|---|
贫液温度/℃ | 39.7 |
贫液MEA质量分数/% | 26.2 |
贫液CO2负荷/(mol/mol) | 0.314 |
入口烟气温度/℃ | 61.8 |
入口气体压力/kPa | 108.3 |
入口烟气流量/(kg/h) | 598 |
入口烟气CO2体积分数/% | 11.1 |
入口烟气H2O体积分数/% | 5.5 |
入口烟气O2体积分数/% | 6 |
入口烟气N2体积分数/% | 77.4 |
冷凝器温度/℃ | 20.7 |
解吸塔顶压力/kPa | 200.5 |
参数 | 文献[ | 模拟值 | 相对误差/% |
---|---|---|---|
富液CO2负荷/(mol/mol) | 0.499 | 0.514 | 2.97 |
再生能耗/(MJ/kg CO2) | 4.46 | 4.285 | 3.92 |
再沸器温度/℃ | 121 | 117.7 | 2.80 |
CO2吸收速率/(kg/h) | 75.6 | 73.0 | 3.44 |
CO2体积分数/% | 98.8 | 98.4 | 0.40 |
Tab. 2 Comparison of simulation results of Tarong CO2 capture pilot plant conventional process
参数 | 文献[ | 模拟值 | 相对误差/% |
---|---|---|---|
富液CO2负荷/(mol/mol) | 0.499 | 0.514 | 2.97 |
再生能耗/(MJ/kg CO2) | 4.46 | 4.285 | 3.92 |
再沸器温度/℃ | 121 | 117.7 | 2.80 |
CO2吸收速率/(kg/h) | 75.6 | 73.0 | 3.44 |
CO2体积分数/% | 98.8 | 98.4 | 0.40 |
参数 | Tarong常规碳捕集系统 | 新系统 |
---|---|---|
再生能耗/(MJ/kg CO2) | 4.341 | 4.275 |
冷却负荷/(MJ/kg CO2) | 2.243 | 2.329 |
冷凝负荷/(MJ/kg CO2) | 0.335 | 0.333 |
烟气温度/℃ | 61.8 | 61.8 |
烟气N2流量/(kg/h) | 439.85 | 439.85 |
烟气CO2流量/(kg/h) | 99.10 | 99.10 |
烟气O2流量/(kg/h) | 38.95 | 38.95 |
烟气H2O流量/(kg/h) | 20.10 | 12.06 |
Tab. 3 Comparison of simulation results between Tarong conventional carbon capture system and the new system
参数 | Tarong常规碳捕集系统 | 新系统 |
---|---|---|
再生能耗/(MJ/kg CO2) | 4.341 | 4.275 |
冷却负荷/(MJ/kg CO2) | 2.243 | 2.329 |
冷凝负荷/(MJ/kg CO2) | 0.335 | 0.333 |
烟气温度/℃ | 61.8 | 61.8 |
烟气N2流量/(kg/h) | 439.85 | 439.85 |
烟气CO2流量/(kg/h) | 99.10 | 99.10 |
烟气O2流量/(kg/h) | 38.95 | 38.95 |
烟气H2O流量/(kg/h) | 20.10 | 12.06 |
1 | International Energy Agency .Global energy review:CO2 Emissions in 2021[EB/OL].[2022-02-12].. doi:10.1787/a60abbf2-en |
2 | 王甫,邓帅,赵军,等 .燃煤电厂CO2捕集与系统集成的能耗与水耗分析[J].工程热物理学报,2016,37(11):2288-2295. |
WANG F, DENG S, ZHAO J,et al .Energy and water consumption analysis of CO2 capture and system integration in coal-fired power plant[J].Journal of Engineering Thermophysics,2016,37(11): 2288-2295. | |
3 | 刘飞 .胺基两相吸收剂捕集CO2机理研究[D].杭州:浙江大学,2020. |
LIU F .Study on mechanism of carbon dioxide capture with amino two-phase absorbent[D].Hangzhou:Zhejiang University,2020. | |
4 | 张建博 .具有双活性组分的CO2化学吸收剂的构建及性能研究[D].南昌:南昌大学,2020. |
ZHANG J B .Construction and performance study of CO2 chemical absorbent with two active components [D].Nanchang:Nanchang University,2020. | |
5 | 储可弘,陈绍云,李强,等 .基于N-乙基乙醇胺非水CO2吸收剂的抗氧化剂[J].化工进展,2019,38(12):5565-5571. |
CHU K H, CHEN S Y, LI Q,et al .Oxidation inhibitor for thylethanolamine based non-aqueous CO2absorbent[J].Chemical Industry and Engineering Progress,2019,38(12): 5565-5571. | |
6 | 张金鑫 .胺法烟气CO2捕集工艺及热泵节能技术研究[D].青岛:中国石油大学(华东),2018. |
ZHANG J X .Study on CO2 capture process of flue gas by amine process and energy saving technology of heat pump[D].Qingdao:China University of Petroleum (East China),2018. | |
7 | 何卉 .CO2化学吸收系统的工艺流程改进和集成优化研究[D].杭州:浙江大学,2018. |
HE H .Study on process flow improvement and integrated optimization of carbon dioxide chemical absorption system[D].Hangzhou:Zhejiang University,2018. | |
8 | 李欣 .火电厂烟气脱碳工艺全流程模拟及工艺改进[D].北京:北京化工大学,2012. |
LI X .Simulation of whole process and process improvement of flue gas decarbonization process in thermal power plant[D].Beijing:Beijing University of Chemical Technology,2012. | |
9 | 冯凌杰,翟融融,郭一村,等 .耦合碳捕集系统的燃气蒸汽联合循环综合性能研究[J].发电技术,2022,43(4):584-592. doi:10.12096/j.2096-4528.pgt.22077 |
FENG L J, ZHAI R R, GUO Y C,et al .Study on the comprehensive performance of natural gas combined cycle plant integrated with carbon capture system[J].Power Generation Technology,2022,43(4):584-592. doi:10.12096/j.2096-4528.pgt.22077 | |
10 | 刘兰华,王瑞林,洪慧 .塔式太阳能辅助燃气蒸汽联合循环钙基碳捕集系统设计[J].发电技术,2021,42(4):517-524. doi:10.12096/j.2096-4528.pgt.21081 |
LIU L H, WANG R L, HONG H. Design of calcium-based carbon capture system for gas-steam combined cycle assisted by solar thermal tower[J].Power Generation Technology,2021,42(4):517-524. doi:10.12096/j.2096-4528.pgt.21081 | |
11 | MACEDONIO F, BRUNETTI A, BARBIERI G,et al .Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams[J].Industrial & Engineering Chemistry Research,2013,52(3):1160-1167. doi:10.1021/ie203031b |
12 | BRUNETTI A, SANTORO S, MACEDONIO F,et al .Waste gaseous streams: from environmental issue to source of water by using membrane condensers[J].CLEAN-Soil,Air,Water,2014,42(8):1145-1153. doi:10.1002/clen.201300104 |
13 | WANG T, YUE M, QI H,et al .Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J].Journal of Membrane Science,2015,484:10-17. doi:10.1016/j.memsci.2015.03.007 |
14 | ZHAO S F, YAN S P, WANG D K,et al .Simultaneous heat and water recovery from flue gas by membrane condensation: experimental investigation[J].Applied Thermal Engineering Design Processes Equipment Economics,2017,113:843-850. doi:10.1016/j.applthermaleng.2016.11.101 |
15 | HU H W, TANG G H, NIU D .Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J].Scientific Reports,2016,6:27274. doi:10.1038/srep27274 |
16 | WANG D, BAO A, KUNC W,et al .Coal power plant flue gas waste heat and water recovery[J].Applied Energy,2012,91(1):341-348. doi:10.1016/j.apenergy.2011.10.003 |
17 | CHEN H, ZHOU Y, CAO S,et al .Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J].Applied Thermal Engineering,2017,110:686-694. doi:10.1016/j.applthermaleng.2016.08.191 |
18 | FERON P, THIRUVENKATACHARI R, COUSINS A .Water production through CO2 capture in coal-fired power plants[J].Energy Science & Engineering,2017,5(5):244-256. doi:10.1002/ese3.179 |
19 | YAN S P, ZHAO S, WARDHAUGH L,et al . Innovative use of membrane contactor as condenser for heat recovery in carbon capture[J].Environmental Science & Technology,2015,49(4):2532. doi:10.1021/es504526s |
20 | COUSIN A, COTTRELL A, HUANG S,et al. Tarong CO 2 capture pilot plant[J].Publications.csiro.au, 2012. doi:10.1002/ghg.1295 |
21 | 周亚男 .水蒸气在复合膜中的跨膜传质传热机理研究[D].北京:华北电力大学,2018. doi:10.1007/s00231-018-2343-1 |
ZHOU Y N .Study on mass and heat transfer mechanism of water vapor in composite membrane[D].Beijing:North China Electric Power University,2018. doi:10.1007/s00231-018-2343-1 | |
22 | LI K, COUSINS A, YU H,et al .Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement[J].Energy Science & Engineering,2016,4(1):23-39. doi:10.1002/ese3.101 |
[1] | Yuhang SUN, Chao LI, Zhengrong WANG, Luchang SUN, Kailiang WANG, Ximing HU, Mengxiang FANG, Feng ZHANG. Study on CO2 Absorption and Regeneration Property of Flue Gas From Methyldiethanolamine-Amine Mixture System [J]. Power Generation Technology, 2024, 45(3): 468-477. |
[2] | Xin YUAN, Jun LIU, Heng CHEN, Peiyuan PAN, Gang XU, Xiuyan WANG. Effect of Carbon Capture Technology Application on Peak Shaving Capacity of Coal-Fired Units [J]. Power Generation Technology, 2024, 45(3): 373-381. |
[3] | Siqi GONG, Zaipeng YUN, Ming XU, Le AO, Chufu LI, Kai HUANG, Chen SUN. Numerical Simulation of Solid Oxide Fuel Cell Tail Gas Catalytic Combustion Based on Three-Way Catalyst [J]. Power Generation Technology, 2024, 45(2): 331-340. |
[4] | Zhenyu ZHAO, Xinxin LI. Low-Carbon Economic Dispatch Based on Ladder Carbon Trading Virtual Power Plant Considering Carbon Capture Power Plant and Power-to-Gas [J]. Power Generation Technology, 2023, 44(6): 769-780. |
[5] | Xiao KONG, Chuanwen ZHAO, Jian SUN, Yafei GUO, Yue PAN, Ping LU. Carbon Fixation Characteristics and Performance Enhancement of CO2 Mineralized All-solid Waste Alkali-activated Cementitious Materials [J]. Power Generation Technology, 2022, 43(4): 600-608. |
[6] | Lingjie FENG, Rongrong ZHAI, Yicun GUO, Ning MA, Jiaxin FU. Study on the Comprehensive Performance of Natural Gas Combined Cycle Plant Integrated With Carbon Capture System [J]. Power Generation Technology, 2022, 43(4): 584-592. |
[7] | Hang YE, Ning HAO, Qi LIU. Review on Key Parameters and Characterization Technology of CO2 Sequestration Mechanism in Saline Aquifers [J]. Power Generation Technology, 2022, 43(4): 562-573. |
[8] | Zhenshan LI, Hu CHEN, Weicheng LI, Lei LIU, Ningsheng CAI. Research Status and Prospect of Chemical Looping Combustion Pilot Systems [J]. Power Generation Technology, 2022, 43(4): 544-561. |
[9] | Huanjun WANG, Niu LIU, Zhaofang ZHENG, Xia XING, Shiwang GAO, Lianbo LIU, Hongwei NIU, Dongfang GUO. Research Progress of Materials for Direct Capture of CO2 From Ambient Air [J]. Power Generation Technology, 2022, 43(4): 533-543. |
[10] | Rui DONG, Lin GAO, Song HE, Dongtai YANG. Significance and Challenges of CCUS Technology for Low-carbon Transformation of China’s Power Industry [J]. Power Generation Technology, 2022, 43(4): 523-532. |
[11] | Lanhua LIU, Ruilin WANG, Hui HONG. Design of Calcium-based Carbon Capture System for Gas-Steam Combined Cycle Assisted by Solar Thermal Tower [J]. Power Generation Technology, 2021, 42(4): 517-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||