Power Generation Technology ›› 2020, Vol. 41 ›› Issue (6): 599-607.DOI: 10.12096/j.2096-4528.pgt.20044
• New and Renewable Energy • Previous Articles Next Articles
Received:
2020-06-20
Published:
2020-12-31
Online:
2021-01-12
Contact:
Luping LI
Supported by:
检测技术 | 适用范围 | 优点 | 缺点 |
振动检测 | 裂纹、开裂、覆冰 | 灵敏度高、实用性强 | 早期故障难以检测 |
超声波检测 | 内部缺陷检测 | 操作简单、定位缺陷准确 | 效率低、破坏材料性能 |
红外热成像检测 | 开裂、分层、裂纹等 | 制作方便、远距离检测 | 传热性好、表面发射率高 |
声发射检测 | 裂纹、断裂、腐蚀 | 适用性强、较高检测灵敏度 | 准确性不高 |
光纤光栅检测 | 裂纹、断裂 | 灵敏度高、抗干扰能力强 | 检测成本高 |
Tab. 1 Characteristics comparison of 5 detection techniques
检测技术 | 适用范围 | 优点 | 缺点 |
振动检测 | 裂纹、开裂、覆冰 | 灵敏度高、实用性强 | 早期故障难以检测 |
超声波检测 | 内部缺陷检测 | 操作简单、定位缺陷准确 | 效率低、破坏材料性能 |
红外热成像检测 | 开裂、分层、裂纹等 | 制作方便、远距离检测 | 传热性好、表面发射率高 |
声发射检测 | 裂纹、断裂、腐蚀 | 适用性强、较高检测灵敏度 | 准确性不高 |
光纤光栅检测 | 裂纹、断裂 | 灵敏度高、抗干扰能力强 | 检测成本高 |
1 |
许国东, 叶杭冶, 解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学, 2018, 20 (3): 44- 50.
DOI |
XU G D , YE H Y , XIE H B . Current situation and development direction of wind turbine technology[J]. China Engineering Science, 2008, 20 (3): 44- 50.
DOI |
|
2 | 刘永前, 赖福兴, 阎洁, 等. 考虑不同截面翼型选取的风电机组叶片优化设计方法[J]. 发电技术, 2019, 40 (4): 382- 388. |
LIU Y Q , LAI F X , YAN J , et al. Optimal design method for wind turbine blades considering aerofoil of cross-section[J]. Power Generation Technology, 2019, 40 (4): 382- 388. | |
3 | 王琳琳, 陈长征, 周勃, 等. 风力机叶片复合材料裂尖温度场及微观损伤研究[J]. 发电技术, 2019, 40 (6): 605- 610. |
WANG L L , CHEN C Z , ZHOU B , et al. Study on crack tip temperature field and microstructure damage for wind turbine composite blade[J]. Power Generation Technology, 2019, 40 (6): 605- 610. | |
4 |
李刚, 胡红利, 李亚妮. 风力发电机叶片状态监测与故障诊断技术近况[J]. 工业仪表与自动化装置, 2017, (5): 16- 20.
DOI |
LI G , HU H L , LI Y N . Recent status of wind turbine blade status monitoring and fault diagnosis technology[J]. Industrial Instrumentation and Automation Devices, 2017, (5): 16- 20.
DOI |
|
5 | 仇梓峰, 王爽心, 李蒙. 基于无人机图像的风力发电机叶片缺陷识别[J]. 发电技术, 2018, 39 (3): 277- 285. |
QIU Z F , WANG S X , LI M . Defect detection of wind turbine blade based on unmanned aerial vehicle-taken Images[J]. Power Generation Technology, 2018, 39 (3): 277- 285. | |
6 |
赵勇, 韩斌, 房刚利. 风力发电机状态监测与故障诊断技术综述[J]. 热力发电, 2016, 45 (10): 1- 5.
DOI |
ZHAO Y , HAN B , FANG G L . Overview of wind turbine state monitoring and fault diagnosis technology[J]. Thermal Power Generation, 2016, 45 (10): 1- 5.
DOI |
|
7 | CHEN J B , SONG Y P , PENG Y B , et al. An efficient rotational sampling method of wind fields for wind turbine blade fatigue analysis[J]. Renewable Energy, 2020, 146 (2): 2170- 2187. |
8 | 李芒芒.风力机叶片机械损伤动态监测方法与技术研究[D].长沙: 长沙理工大学, 2012. |
LI M M.Research on dynamic monitoring methods and technologies for mechanical damage of wind turbine Blades[D].Changsha: Changsha University of Science and Technology, 2012. | |
9 | 张磊, 马云玲, 赵贺, 等. 风力机叶片故障诊断方法研究[J]. 企业导报, 2015, (19): 164. |
ZHANG L , MA Y L , ZHAO H , et al. Study on fault diagnosis methods of wind turbine Blades[J]. Enterprise Guide, 2015, (19): 164. | |
10 | MOHAMMAD M R , MEHDI B , HAMED M , et al. Modal-based damage identification for the nonlinear model of modern wind turbine blade[J]. Renewable Energy, 2016, 94 (8): 391- 409. |
11 |
周勃, 谷艳玲, 项宏伟, 等. 风力机叶片裂纹扩展预测与疲劳损伤评价[J]. 太阳能学报, 2015, 36 (1): 41- 48.
DOI |
ZHOU B , GU Y L , XIANG H W , et al. Prediction of crack growth and fatigue damage evaluation of wind turbine blade[J]. Acta Solar Energy, 2015, 36 (1): 41- 48.
DOI |
|
12 | 龚妙, 李录平, 刘瑞, 等. 基于运行参数特征的风力机叶片覆冰诊断方法[J]. 动力工程学报, 2019, 39 (3): 214- 219. |
GONG M , LI L P , LIU R , et al. Wind turbine blade icing diagnosis based on operating parameter characteristics[J]. Chinese Journal of Power Engineering, 2019, 39 (3): 214- 219. | |
13 | 石凯凯, 蔡力勋, 包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报, 2014, 50 (18): 50- 58. |
SHI K K , CAI L X , BAO C . Multiple theoretical models for predicting fatigue crack growth[J]. Chinese Journal of Mechanical Engineering, 2014, 50 (18): 50- 58. | |
14 |
周勃, 陈维涛, 贺森亮, 等. 风力发电机叶片多裂纹随机扩展和损伤容限研究[J]. 太阳能学报, 2015, 36 (12): 2837- 2843.
DOI |
ZHOU B , CHEN W T , HE S L , et al. Study on random crack growth and damage tolerance of wind turbine blades[J]. Acta Solar Energy, 2015, 36 (12): 2837- 2843.
DOI |
|
15 | ZHANG M M , TAN B , XU J Z . Smart fatigue load control on the large-scale wind turbine blades using different sensing signals[J]. Renewable Energy, 2016, 87 (1): 111- 119. |
16 | 李丹, 邱颖宁, 冯延晖. 风力发电系统警报信号故障诊断[J]. 太阳能学报, 2017, 38 (11): 3138- 3143. |
LI D , QIU Y N , FENG Y H . Fault diagnosis of wind power system warning signal[J]. Journal of Solar Energy, 2017, 38 (11): 3138- 3143. | |
17 |
陈镇南, 卢绪祥, 李录平, 等. 基于ANSYS/LS-DYNA的带冠叶片碰撞振动特性的有限元分析[J]. 动力工程学报, 2013, 33 (3): 189- 193.
DOI |
CHEN Z N , LU X X , LI L P , et al. Finite element analysis based on the collision vibration characteristics of crowned blades of ANSYS/LS-DYNA[J]. Dynamic Engineering, 2013, 33 (3): 189- 193.
DOI |
|
18 | 李海波, 卢绪祥, 李录平, 等. 风力机叶片动力特性实验台设计[J]. 热能动力工程, 2012, 27 (1): 117- 121. |
LI H B , LU X X , LI L P , et al. Wind turbine blade power characteristics test bench design[J]. Thermal Power Engineering, 2012, 27 (1): 117- 121. | |
19 | 陈雪峰, 李继猛, 程航, 等. 风力发电机状态监测和故障诊断技术的研究与进展[J]. 机械工程学报, 2011, 47 (9): 45- 52. |
CHEN X F , LI J M , CHENG H , et al. Research and progress in wind turbine condition monitoring and troubleshooting technology[J]. Mechanical Engineering Journal, 2011, 47 (9): 45- 52. | |
20 | LEE J K , PARK J Y , OH K Y , et al. Transformation algorithm of wind turbine blade moment signals for blade condition monitoring[J]. Renewable Energy, 2014, |
21 |
李录平, 封江, 杨波. 风力机叶片寿命损耗计算方法与工程应用[J]. 长沙理工大学学报(自然科学版), 2017, 14 (4): 83- 89.
DOI |
LI L P , FENG J , YANG B . Wind turbine blade life loss calculation method and engineering application[J]. Changsha University of Technology Journal (Natural Science), 2017, 14 (4): 83- 89.
DOI |
|
22 |
陈彩凤, 成斌, 李西洋, 等. 风力发电机叶片模态分析及参数优化[J]. 水力发电, 2018, 44 (9): 85- 88.
DOI |
CHEN C F , CHENG B , LI X Y , et al. Wind turbine blade modal analysis and parameter optimization[J]. Hydropower, 2018, 44 (9): 85- 88.
DOI |
|
23 |
陈顺章, 李录平, 晋风华, 等. 风力机桨叶的三维建模与动力学特性有限元计算[J]. 可再生能源, 2010, 28 (3): 29- 34.
DOI |
CHEN S Z , LI L P , JIN F H , et al. 3D modeling of wind turbine blades and the finite element of dynamics[J]. Renewable Energy, 2010, 28 (3): 29- 34.
DOI |
|
24 |
黄敏, 徐菲, 刘珺. 基于云计算与物联网的风力发电智能监测系统研究[J]. 可再生能源, 2017, 35 (7): 1032- 1037.
DOI |
HUANG M , XU F , LIU W . Research on intelligent monitoring systems for wind power based on cloud computing and the Internet of Things[J]. Renewable Energy, 2017, 35 (7): 1032- 1037.
DOI |
|
25 |
赵勇, 王冰佳, 王杰斌. 常用风力机叶片无损检测技术对比分析[J]. 热力发电, 2015, 44 (12): 7- 10.
DOI |
ZHAO Y , WANG B J , WANG J B . Comparative analysis of commonly used wind turbine blade[J]. Thermal Power Generation, 2015, 44 (12): 7- 10.
DOI |
|
26 | 王志刚, 杨波, 陈志刚, 等. 运行状态下的风力机叶片在线监测技术进展[J]. 热能动力工程, 2017, 32 (S1): 1- 5. |
WANG Z G , YANG B , CHEN Z G , et al. Advances in the online monitoring technology of wind turbine blades in operational state[J]. Thermal Power Engineering, 2017, 32 (S1): 1- 5. | |
27 | 刘胜先, 李录平, 余涛, 等. 基于振动检测的风力机叶片覆冰状态诊断技术[J]. 中国电机工程学报, 2013, 33 (32): 88- 95. |
LIU S X , LI L P , YU T , et al. Seismic-based wind turbine blade ice-covered status diagnostic technology[J]. China Electrical Engineering Journal, 2013, 33 (32): 88- 95. | |
28 |
雷利斌, 李录平, 刘胜先, 等. 基于振型曲率的风力机叶片覆冰检测技术[J]. 太阳能学报, 2014, 35 (5): 841- 847.
DOI |
LEI L B , LI L P , LIU S X , et al. Wind turbine blade ice-covering detection technology based on vibration-type curvature[J]. Solar Journal, 2014, 35 (5): 841- 847.
DOI |
|
29 | 李录平, 李芒芒, 晋风华, 等. 振动检测技术在风力机叶片裂纹故障监测中的应用[J]. 热能动力工程, 2013, 28 (2): 207- 212. |
LI L P , LI M M , JIN F H , et al. Application of vibration detection technology in the monitoring of crack faults in wind turbine blades[J]. Thermal Power Engineering, 2013, 28 (2): 207- 212. | |
30 | 欧阳涛.基于叶尖定时的旋转叶片振动检测及参数辨识技术[D].天津: 天津大学, 2011. |
OUYANG T.Rotating blade vibration detection and parameter identification technology based on leaf tip timing[D].Tianjin: Tianjin University, 2011. | |
31 |
陈广华, 田德, 李琪. 风力发电机组叶片振动无线检测系统[J]. 电子技术应用, 2012, 38 (5): 80- 83.
DOI |
CHEN G H , TiAN D , LI Q . Wind turbine blade vibration wireless detection system[J]. Electronic Technology Applications, 2012, 38 (5): 80- 83.
DOI |
|
32 |
LIU Z P , ZHANG L , CARRASCO J . Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method[J]. Renewable Energy, 2020, 146, 99- 110.
DOI |
33 |
陈志刚, 李录平, 杨波, 等. 风电机组叶片覆冰状态与动力学特性的定量关系研究[J]. 风能, 2018, (1): 60- 65.
DOI |
CHEN Z G , LI L P , YANG B , et al. Quantitative relationship between wind turbine blade ice cover and dynamics study[J]. Wind Energy, 2018, (1): 60- 65.
DOI |
|
34 | 谭海辉, 李录平, 朱益军, 等. 覆冰对风力机叶片动力特性影响的有限元分析[J]. 可再生能源, 2010, 28 (4): 33- 38. |
TAN H H , LI L P , ZHU Y J , et al. A finite element analysis of the impact of ice cover on the power characteristics of wind turbine blades[J]. Renewable Energy, 2010, 28 (4): 33- 38. | |
35 | 李录平, 刘胜先, 谭海辉, 等. 气温和空气湿度对桨叶覆冰特性影响的实验研究[J]. 热能动力工程, 2012, 27 (5): 610- 614. |
LI L P , LIU S X , TAN H H , et al. Experimental study of the effects of temperature and air humidity on the characteristics of blade ice cover[J]. Thermal Power Engineering, 2012, 27 (5): 610- 614. | |
36 | 李录平, 颜健, 封江, 等. 基于WiFi技术的风力机叶片覆冰监测系统研究[J]. 可再生能源, 2016, 34 (4): 543- 549. |
LI L P , YAN J , FENG J , et al. Research on the wind turbine blade ice-covering monitoring system based on WiFi technology[J]. Renewable energy, 2016, 34 (4): 543- 549. | |
37 | 颜健, 李录平, 雷利斌, 等. 风力机桨叶超声波除冰实验技术研究及其应用[J]. 可再生能源, 2015, 33 (1): 68- 74. |
YAN J , LI L P , LEI L B , et al. Wind turbine blade ultrasonic de-icing experimental technology research and its application[J]. Renewable Energy, 2015, 33 (1): 68- 74. | |
38 | 谭海辉, 李录平, 靳攀科, 等. 风力机叶片超声波除冰理论与方法[J]. 中国电机工程学报, 2010, 30 (35): 112- 117. |
TAN H H , LI L P , JIN P K , et al. Wind turbine blade ultrasonic de-icing theory and methods[J]. China Electric Engineering Journal, 2010, 30 (35): 112- 117. | |
39 | 李录平, 谭海辉, 卢绪祥, 等. 层状结构中的超声传播理论及其在风力机桨叶除冰中的应用[J]. 中国电机工程学报, 2012, 32 (17): 125- 132. |
LI L P , TAN H H , LU X X , et al. The theory of ultrasonic propagation in the layered structure and its application in de-icing the blades of wind turbines[J]. China Electrical Engineering Journal, 2012, 32 (17): 125- 132. | |
40 | TIWARI K A , RAISUTIS R . Post processing of ultrasonic signals for the analysis of defects in wind turbine blade using guided waves[J]. The Journal of Strain Analysis for Engineering Design, 2018, 53 (12): 128- 139. |
41 | 王绍龙.基于超声波法的风力机叶片翼型防除冰研究[D].哈尔滨: 东北农业大学, 2014. |
WANG S L.Research on anti-deicing of wind turbine Blade Airfoil Based on ultrasonic Wave method[D].Harbin: Northeast Agricultural University, 2014. | |
42 | 琦格琦.基于红外热成像技术的风力机叶片涂层损伤监测的研究[D].呼和浩特: 内蒙古农业大学, 2019. |
QI G Q.Study on the damage monitoring of wind turbine blade coating based on infrared thermal imaging technology[D].Hohhot: Inner Mongolia Agricultural University, 2019. | |
43 | 肖劲松, 严天鹏. 风力机叶片的红外热成像无损检测的数值研究[J]. 北京工业大学学报, 2006, 32 (1): 48- 52. |
XIAO J S , YAN T P . Numerical study on nondestructive testing of wind turbine Blades by infrared Thermal Imaging[J]. Journal of Beijing University of Technology, 2006, 32 (1): 48- 52. | |
44 | MITJA M , LOVRENC N , MIHAEL S . Measurements on rotating blades using IR thermography[J]. Experimental Thermal and Fluid Science, 2007, 32 (2): 387- 396. |
45 | JORDAN N , KIRAN B , RAJITHA M , et al. Using atmospheric inputs for Artificial Neural Networks to improve wind turbine power prediction[J]. Energy, 2020, 190 (1): 153- 162. |
46 | 田磊. 信息化控制技术在风力发电中的应用[J]. 信息记录材料, 2019, 20 (8): 151- 152. |
TIAN L . Application of information control technology in wind power generation[J]. Information Recording Materials, 2019, 20 (8): 151- 152. | |
47 | 龚妙, 李录平. 声发射技术在风力机叶片故障检测中的应用研究综述[J]. 太阳能, 2018, (5): 57- 61. |
GONG M , LI L P . Review of the application of acoustic emission technology in the detection of wind turbine blade fault[J]. Solar Energy, 2018, (5): 57- 61. | |
48 | 周勃, 张士伟, 陈长征, 等. 风力机叶片多裂纹扩展声发射信号的特征识别[J]. 仪器仪表学报, 2015, 36 (1): 110- 117. |
ZHOU B , ZHANG S W , CHEN C Z , et al. Feature recognition of the multi-crack expansion sound emission signal of wind turbine blades[J]. Instrumentation Journal, 2015, 36 (1): 110- 117. | |
49 | TANG J L , SOUA S , MARES C , et al. An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades[J]. Renewable Energy, 2016, 99 (12): 170- 179. |
50 | 杜文超.基于声发射技术的大型风力机叶片材料的损伤研究[D].南京: 南京航空航天大学, 2012. |
DU W C.Damage study on blade materials of large-scale wind turbine based on acoustic emission technology[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. | |
51 | 陈娟子.基于光纤光栅的风机叶片应变监测关键技术研究[D].成都: 西南交通大学, 2012. |
CHEN J Z.Research on key technology of FBG based fan blade strain monitoring[D].Chengdu: Southwest Jiaotong University, 2012. | |
52 | 李俊一, 薛鹏, 朱晓非, 等. 光纤光栅技术在风力发电机组叶片检测中的应用[J]. 风能产业, 2017, (6): 78- 82. |
LI J Y , XUE P , ZHU X F , et al. The application of fiber-optic grating technology in blade detection in wind turbines[J]. Wind Energy Industry, 2017, (6): 78- 82. | |
53 | TYLER J A , AJIT A , PIER M , et al. Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring[J]. Smart Materials and Structures, 2013, 22 (7): 126- 135. |
54 | 李继超. 基于FBG风电桨叶动平衡监测系统的研究[J]. 企业技术开发, 2015, 34 (6): 1- 2. |
LI J C . Research on FBG wind power blade dynamic balance monitoring system[J]. Enterprise technology development, 2015, 34 (6): 1- 2. |
[1] | Hang ZHANG, Chuanjie ZHOU, Lin ZHANG, Jietao CHEN, Chunmei XU, Daogang PENG. Fault Diagnosis of Power Plant Induced Draft Fan Based on PNN-WNN-DS Information Fusion [J]. Power Generation Technology, 2022, 43(6): 951-958. |
[2] | Mingliang BAI, Dongxue ZHANG, Jinfu LIU, Jiao LIU, Daren YU. Anomaly Detection of Gas Turbine Hot Components Based on Deep Autoencoder and Support Vector Data Description [J]. Power Generation Technology, 2021, 42(4): 422-430. |
[3] | Shangnian CHEN, Luping LI, Shihai ZHANG, Minnan OUYANG, Ang FAN, Xiankui WEN. Research Progress of Vibration Fault Diagnosis Technology for Steam Turbine Generator Sets [J]. Power Generation Technology, 2021, 42(4): 489-499. |
[4] | Yaguang LI, Meng LI. Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network [J]. Power Generation Technology, 2021, 42(3): 313-321. |
[5] | Wei WEI. Analysis and Treatment of Mass Unbalance Fault of Fan in Large Thermal Power Plant [J]. Power Generation Technology, 2020, 41(2): 198-201. |
[6] | Linlin WANG,Changzheng CHEN,Bo ZHOU,Yumeng SUN,Shuang KANG,Jinyao DU. Study on Crack Tip Temperature Field and Microstructure Damage for Wind Turbine Composite Blade [J]. Power Generation Technology, 2019, 40(6): 605-610. |
[7] | Yun LUO,Xuelin CHEN,Ruidong LI,Yongjian SU,Yiwei XU,Junkai CHAO,Pengzhu LI,Haibin REN. Prediction Model and Application of Turbine Regulating Stage Pressure Under Variable Conditions [J]. Power Generation Technology, 2019, 40(2): 161-167. |
[8] | Guogang YUAN,Zhushi RAO. Review of Non-electrical Quantity Monitoring and Fault Diagnosis for Power Transformer on Vibration Analysis Method [J]. Power Generation Technology, 2019, 40(2): 134-140. |
[9] | Jianguo WANG,Yutong LIN,Ye TIAN,Peng DU,Peiyan ZHANG,Hongwei XIN,Yingjie WU. Fault Diagnosis of Rolling Bearing of Wind Turbine Based on VMD and Different Envelope Order Structure [J]. Power Generation Technology, 2018, 39(1): 63-69. |
[10] | Ningbo LI,Tao YAN,Naipeng LI,Detong KONG,Qingchao LIU,Yaguo LEI. Ice Detection Method by Using SCADA Data on Wind Turbine Blades [J]. Power Generation Technology, 2018, 39(1): 58-62. |
[11] | XING Tao, LI Zhijun, CAO Lingyan, DING Lihua. Transformer Fault Diagnosis Based on Adaptive Immune Algorithm [J]. Power Generation Technology, 2017, 38(6): 42-45. |
[12] | KONG De-tong, JIA Si-yuan, WANG Tian-pin, LIU Qing-chao. Wind Turbines Fault Diagnosis Method Researched by Vibration Analysis [J]. Power Generation Technology, 2017, 38(1): 54-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||