发电技术

• •    下一篇

基于CO2布雷顿循环的燃气轮机余热回收系统热力学性能分析

牛晓娟1,布政坤2,雷有哲1,付亚楠1,洪文鹏1*   

  1. 1.东北电力大学能源与动力工程学院,吉林省 吉林市 132012;2.中国电力工程顾问集团东北电力设计院有限公司,吉林省 长春市 130000
  • 基金资助:

    国家自然科学基金青年基金项目(51906038)

Thermodynamic Performance Analysis of Gas Turbine Waste Heat Recovery System Based on CO2 Brayton Cycle

NIU Xiaojuan1, BU Zhengkun2, LEI Youzhe1, FU Yanan1, HONG Wenpeng1*   

  1. 1.College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, Jilin Province, China; 2. Northeast electric power design institute co. , ltd. of China power engineering consulting group,Changchun130000, Jilin Province, China
  • Supported by:
    National Natural Science Foundation of China Youth Fund Project(51906038).

摘要: 【目的】为充分回收燃气轮机余热能量,本文构建了燃汽轮机-超临界CO2布雷顿联合循环余热回收系统,并通过级联回热循环来提高系统整体的循环效率从而达到系统优化的目的。【方法】采用Matlab软件建立各部件数学模型,基于最佳分流比方法分析循环参数对系统性能影响。【结果】结果表明:最佳分流比通过提高内部换热量,降低外部热源输入量使系统效率得到提高。随循环压比增大,内部回热量逐渐降低导致循环系统热效率先升高后降低。当高温换热器换热量略低于低温换热器换热量时,对应的循环压比是当前入口温度下的最佳压比。【结论】在2个超临界CO2布雷顿循环匹配良好的情况下,燃气-再压缩-回热联合循环热效率达到47.50%,比燃气-再压缩循环在同工况下热效率高4.4%。

关键词: 燃气轮机, 余热回收, 超临界二氧化碳, 布雷顿循环, 联合循环, 循环效率, 热力学分析

Abstract: [Objecctive] In order to fully recover the waste[基金项目:国家自然科学基金青年基金项目(51906038)。 National Natural Science Foundation of China Youth Fund Project(51906038).] heat energy of gas turbine, this paper constructs the gas turbine-supercritical CO2 Brayton combined cycle waste heat recovery system, and through the cascade regenerativecycle to improve the overall cycle efficiency of the system so as to achieve the purpose of system optimization. [Methods] The mathematical model of each component is established by Matlab software, and the influence of cycle parameters on system performance is analyzed based on the method of optimal shunt ratio. [Result] The results show that the optimal shunt ratio improves the efficiency of the system by increasing the internal heat exchange and reducing the external heat source input. With the increase of the cycle pressure ratio, the internal heat recovery decreases gradually, which leads to the increase of the thermal efficiency of the circulation system at first and then decrease. When the heat transfer of the high temperature heat exchanger is slightly lower than that of the low temperature heat exchanger, the corresponding cycle pressure ratio is the best pressure ratio at the current inlet temperature. [Conclusion] When the two supercritical CO2 Brayton cycles match well, the thermal efficiency of the gas-recompression-regenerative combined cycle reaches 47.50%, which is 4.4 percentage points higher than that of the gas-recompression cycle under the same working conditions.

Key words: gas turbine, waste heat recovery, supercritical carbon dioxide, Brayton cycle, combined circulation, cycle efficiency, thermodynamic analysis