发电技术 ›› 2024, Vol. 45 ›› Issue (5): 793-801.DOI: 10.12096/j.2096-4528.pgt.24145
• 燃气轮机发电技术 • 上一篇
任静, 李雪英
收稿日期:
2024-07-15
修回日期:
2024-09-20
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Jing REN, Xueying LI
Received:
2024-07-15
Revised:
2024-09-20
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 透平叶片高效内部冷却技术对提高燃气轮机热效率至关重要,高温透平动叶作为燃气轮机的重要部件,对其冷却性能的把握显得尤为重要。由于科里奥利力(科氏力)、浮升力和通道结构对高温透平动叶内部通道冷却性能影响显著,因此,基于这些影响,总结归纳高温透平动叶内部冷却通道的研究现状与发展趋势。 方法 介绍了旋转内部冷却通道的新型结构设计,提出了一种适用于双层壁叶片构型的新型旋转内部冷却通道结构。 结论 双侧强化U形通道可以利用科氏力的强化换热作用,导致其冷却性能优于传统旋转U形通道,燃机透平动叶内部冷却有着广阔的提升空间。
中图分类号:
任静, 李雪英. 燃气轮机透平叶片旋转内部冷却通道研究现状与发展趋势[J]. 发电技术, 2024, 45(5): 793-801.
Jing REN, Xueying LI. Research Status and Development Trend of Rotating Internal Cooling Channel in Gas Turbine Blade[J]. Power Generation Technology, 2024, 45(5): 793-801.
图3 旋转无加热条件下,科氏力和浮升力对径向速度分布影响的概念图
Fig. 3 Conceptual diagram about the influence of Coriolis force and buoyancy on radial flow profile under non-heated rotating condition
图6 传统U形通道、双侧强化U形通道和转90°三通道的前缘面和尾缘面平均努塞尔数比的对比曲线图
Fig. 6 Comparison curves of average Nusselt number ratio on the leading and trailing walls of conventional U channel, bifacial-enhanced U channel, and 90° three-channel channel
1 | 杨旸,李耀强,张金琦 .基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J].发电技术,2023,44(5):712-721. doi:10.12096/j.2096-4528.pgt.21109 |
YANG Y, LI Y Q, ZHANG J Q,et al .Design of dome structure for a lean premixed swirled combustor of gas turbine based on the numerical method[J].Power Generation Technology,2023,44(5):712-721. doi:10.12096/j.2096-4528.pgt.21109 | |
2 | 崔则阳,孔祥玲,付经伦,等 .一种基于图像的燃气轮机叶型参数测量方法[J].发电技术,2024,45(1):106-112. |
CUI Z Y, KONG X L, FU J L,et al .An image-based turbine blade parameter inspection method[J].Power Generation Technology.2024,45(1):106-112. | |
3 | JIANG H D, REN J, LI X Y,et al .Status and development trend of the heavy duty gas turbine[J].Proceedings of the CSEE,2014,3429:5096-5102. |
4 | HAN J C, DUTTA S, EKKAD S .Gas turbine heat transfer and cooling technology[M].Florida,US:CRC Press:156- 158. doi:10.1201/b13616 |
5 | HAN J C .Fundamental gas turbine heat transfer[J].Journal of Thermal Science and Engineering Applications,2013,5(2):021007. doi:10.1115/1.4023826 |
6 | GLADDEN H J, SIMONEAU R J .Review and assessment of the dtabase and numerical modeling for turbine[C]//33rd ASME International Gas Turbine and Aeroengine Congress and Exposition.Amsterdam:National Aeronautics and Space Administration,1988,2:39-55. |
7 | IACOVIDES H .Computational fluid dynamics applied to internal gas-turbine blade cooling:a review[J].International Journal of Heat & Fluid Flow,1995,16(6):454-470. doi:10.1016/0142-727x(95)00072-x |
8 | JE-CHIN H, DUTTA S .Recent developments in turbine blade internal cooling[J].Annals of the New York Academy of Sciences,2001,934(1):162-178. doi:10.1111/j.1749-6632.2001.tb05850.x |
9 | LIGRANI P .Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines[J].International Journal of Rotating Machinery,2013(3):1-32. doi:10.1155/2013/275653 |
10 | JASON T, DOUGLAS S, JAMES B,et al .State-of-the-art cooling technology for a turbine rotor blade[J].Journal of Turbomachinery,2018,140(7):071007. doi:10.1115/1.4039942 |
11 | WRIGHT L, HAN J C .Heat transfer enhancement for turbine blade internal cooling[J].Journal of Enhanced Heat Transfer,2013,21(2/3):111-140. doi:10.1615/jenhheattransf.2015012169 |
12 | BUNKER R .Evolution of turbine cooling[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,USA:ASME,2017:189-201. |
13 | EKKAD S V, SINGH P .Detailed heat transfer measurements for rotating turbulent flows in gas turbine systems[J].Energies,2020,14(1):39-52. doi:10.3390/en14010039 |
14 | DU W, LUO L, JIAO Y,et al .Heat transfer in the trailing region of gas turbines:a state-of-the-art review[J].Applied Thermal Engineering,2021,199:117614. doi:10.1016/j.applthermaleng.2021.117614 |
15 | SAFI A, HAMDAN M O, ELNAJJAR E .Numerical investigation on the effect of rotation on impingement cooling of the gas turbine leading edge[J].Alexandria Engineering Journal,2020,59(5):3781-3797. doi:10.1016/j.aej.2020.06.035 |
16 | MATTERN C, HENNECKE D K .The influence of rotation on impingement cooling[C]//ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition.Birmingham,US:ASME,1996:96-101. doi:10.1115/96-gt-161 |
17 | SAHIN I, CHEN I, WRIGHT L M,et al . Heat transfer in rotating,trailing-edge,converging channels with smooth walls and pin-fins[J].Journal of Turbomachinery,2021,143(7):1-36. |
18 | HAN J C .Turbine blade cooling studies at Texas A&M university:1980-2004[J].Journal of Thermophysics and Heat Transfer,2014,20(2):161-187. |
19 | JOHN E H .Instability and secondary motion in a rotating channel flow[J].Journal of Fluid Mechanics,1971,45(2):341-351. doi:10.1017/s0022112071000077 |
20 | JOHNSTON J P, HALLEENT R M, LEZIUS D K .Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow[J].Journal of Fluid Mechanics,1973,56(3):156-167. doi:10.1017/s0022112072002502 |
21 | MOORE J .Effects of Coriolis on turbulent flow in rotating rectangular channels[D].Cambridge, USA:Massachusetts Institute of Technology,1967. |
22 | ROTHE P H, JOHNSTON J P .Free shear layer behavior in rotating systems[J].Journal of Fluids Engineering,1979,101(1):117-126. doi:10.1115/1.3448721 |
23 | WAGNER R E, H Ret al VELKOFF .Measurements of secondary flows in a rotating duct[J].Journal of Engineering for Power,1972,94(4):261-270. doi:10.1115/1.3445681 |
24 | HAN J C, ZHANG Y M, KALKUEHLER K,et al .Uneven wall temperature effect on local heat transfer in a rotating two-pass square channel with smooth walls[J].Journal of Heat Transfer,1993,115(4):912-920. doi:10.1115/1.2911387 |
25 | KUKREJA R T, PARK C W, LAU S C .Heat (mass) transfer in a rotating two-pass square channel-part II:local transfer coefficient, smooth channel[J].International Journal of Rotating Machinery,1998,4(1):1-15. doi:10.1155/s1023621x98000013 |
26 | AL-QAHTANI M, JANG Y J, CHEN H C,et al .Flow and heat transfer in rotating two-pass rectangular channels (AR=2) by Reynolds stress turbulence model[J].International Journal of Heat & Mass Transfer,2002,45(9):1823-1838. doi:10.1016/s0017-9310(01)00292-7 |
27 | WAGNER J H, JOHNSON BV, HAJEK T J .Heat transfer in rotating passages with smooth walls and radial outward flow[J].Journal of Turbomachinery,1991,113(1):2927736. doi:10.1115/1.2927736 |
28 | HWANG G J, CHEN R K .Experimental studies and correlations of convective heat transfer in a radially rotating serpentine passage[J].Journal of Heat Transfer,1997,119(3):460. doi:10.1115/1.2824119 |
29 | YANG S F, WU H W, HAN J C,et al .Heat transfer in a smooth rotating multi-passage channel with hub turning vane and trailing-edge slot ejection[J].International Journal of Heat & Mass Transfer,2017,109:1-15. doi:10.1016/j.ijheatmasstransfer.2017.01.059 |
30 | DENG H W, QIU L, TAO Z,et al .Heat transfer study in rotating smooth square U-duct at high rotation numbers[J].International Journal of Heat & Mass Transfer,2013,66:733-744. doi:10.1016/j.ijheatmasstransfer.2013.07.080 |
31 | QIU L, DENG H, SUN J,et al .Pressure drop and heat transfer in rotating smooth square U-duct under high rotation numbers[J].International Journal of Heat & Mass Transfer,2013,66:543-552. doi:10.1016/j.ijheatmasstransfer.2013.07.055 |
32 | MAYO I, ARTS T, EL-HABIB A,et al .Two-dimensional heat transfer distribution of a rotating ribbed channel at different reynolds numbers[J].Journal of Turbomachinery,2014,137(3):031002. doi:10.1115/1.4028458 |
33 | LI H, YOU R, DENG H,et al .Heat transfer investigation in a rotating U-turn smooth channel with irregular cross-section[J].International Journal of Heat and Mass Transfer,2015,96:267-277. doi:10.1016/j.ijheatmasstransfer.2015.12.071 |
34 | FABIO P, LUCA F, ALESSANDRO A,et al .Rotating heat transfer measurement on a multi-pass internal cooling channel-I rig developmemt[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:ASME,2016:1116-1124. doi:10.1115/gt2016-56308 |
35 | FABIO P, LUCA F, ALESSANDRO A,et al .Rotating heat transfer measurement on a multi-pass internal cooling channe-II experimental tests[C]//ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.Seoul,South Korea:ASME,2016:1124-1135. doi:10.1115/gt2016-56307 |
36 | LI Y, DENG H W, TAO Z,et al .Heat transfer characteristics in a rotating trailing edge internal cooling channel with two coolant inlets[J].International Journal of Heat and Mass Transfer,2017,105:220-229. doi:10.1016/j.ijheatmasstransfer.2016.08.114 |
37 | YOU H L, LI H W, YOU R Q,et al .Experimental investigations of turbulent flow in a rotating ribbed channel in terms of the effect of coriolis forcet[C]//ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition.Phoenix,US:ASME,2019:90757. doi:10.1115/gt2019-90757 |
38 | ECKERT E R G, DIAGUILA A J, CURREN A N,et al .Experiments on Mixed-free and forced-convective heat transfer connected with turbulent flow through a short tube[J].Technical Report Archive & Image Library,1953,12:006123. |
39 | METAIS B, ECKERT E R G .Forced,mixed,and free convection regimes[J].Journal of Heat Transfer,1964,86(2):295-304. doi:10.1115/1.3687128 |
40 | BRUNDRETT E, BURROUGHS P R .The temperature inner-law and heat transfer for turbulent air flow in a vertical square duct[J].International Journal of Heat & Mass Transfer,1967,10(9):1133-1142. doi:10.1016/0017-9310(67)90079-8 |
41 | GUIDEZ J .Study of the convective heat transfer in a rotating coolant channel[J].Journal of Turbomachinery,1989,111(1):43-51. doi:10.1115/1.3262235 |
42 | CLIFFORD R J .Rotating heat transfer investigations on a multipass cooling geometry[J].Heat Transfer and Cooling in Gas Turbines,1985,12:21-28. |
43 | MORRIS W D, AYHAN T .Observations on the influence of rotation on heat transfer in the coolant channels of gas turbine rotor blades[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers,1979,193:303-311. doi:10.1243/pime_proc_1979_193_032_02 |
44 | MORRIS W D .Heat transfer and fluid flow in rotating coolant channels[M].New York:Wiley,1981. |
45 | PARSONS J A, JE-CHIN H, YUMING Z .Wall heating effect on local heat transfer in a rotating two-pass square channel with 90° rib turbulators[J].International Journal of Heat and Mass Transfer,1994,37:1411-1420. doi:10.1016/0017-9310(94)90187-2 |
46 | ABDEL-WAHAB S, TAFTI D K .Large eddy simulation of flow and heat transfer in a 90 deg ribbed duct with rotation:effect of coriolis and centrifugal buoyancy forces[J].Journal of Turbomachinery,2004,126(4):627-636. doi:10.1115/1.1791648 |
47 | WANG Z, CORRAL R .Effect of uneven wall heating conditions under different buoyancy numbers for a one side rib-roughened rotating channel[J].Journal of Turbomachinery,2017,139(11):1-10. doi:10.1115/1.4037758 |
48 | YOU R Q, LI H, TAO Z,et al .PIV measurements of turbulent flows in a smooth channel with the heated boundary under rotation conditions[J].Applied Thermal Engineering,2017,123:1021-1033. doi:10.1016/j.applthermaleng.2017.05.162 |
49 | TAO Z, LI H W, WU H J,et al .Interaction between the primary flow fields and the secondary flow fields under rotating condition[J].Experimental Thermal and Fluid Science,2017,84:217-230. doi:10.1016/j.expthermflusci.2017.02.010 |
50 | ANDREA L .Hear transfer characterization inside a rotating rib roughed cooling channel with multiple heated wall[C]//ASME Turbo Expo 2020:Turbomachinery Technical Conference and Exposition.London,United Kingdom :ASME,2020:15129. doi:10.1115/gt2020-15129 |
51 | METZGER D E, STAN R L .Entry region heat transfer in rotating radial tubes[J].Journal of Energy,1977,1(5):297-300. doi:10.2514/3.62339 |
52 | CHEN R K, HWANG G J .Aspect ratio effect on convective heat transfer of radially outward flow in rotating rectangular ducts[J].International Journal of Rotating Machinery,1994,1(1):1-18. doi:10.1155/s1023621x94000023 |
53 | SOONG C Y, LIN S T, HWANG G J,et al .An experimental study of convective heat transfer in radially rotating rectangular ducts[J].Journal of Heat Transfer,1991,113(3):604-613. doi:10.1115/1.2910608 |
54 | SU G G, CHEN H C, HAN J C,et al .Computation of flow and heat transfer in rotating two-pass rectangular channels (AR=1∶1,1∶2,and 1∶4) with smooth walls by a Reynolds stress turbulence model[J].International Journal of Heat and Mass Transfer,2004,47(26):5665-5683. doi:10.1016/j.ijheatmasstransfer.2004.07.019 |
55 | LIU Y H,HUB M, HAN J C .High rotation number effect on heat transfer in a trailing edge channel with tapered ribs[J].International Journal of Heat and Fluid Flow,2012,33(1):182-192. doi:10.1016/j.ijheatfluidflow.2011.10.002 |
56 | TAO Z, DENG H .Heat transfer in a rotating smooth wedge-shaped channel with lateral fluid extraction[J].Applied Thermal Engineering,2015,87:198-205. doi:10.1016/j.applthermaleng.2015.04.073 |
57 | LI Y, XU G Q, DENG H W,et al .Effects of coolant mass flow rate ratio on heat transfer in a two-inlet rotating wedge-shaped channel[J].International Journal of Heat and Mass Transfer,2016,96:353-361. doi:10.1016/j.ijheatmasstransfer.2016.01.046 |
58 | DENG H W, WANG Z, WANG J,et al .Flow and heat transfer in a rotating channel with impingement cooling and film extraction[J].International Journal of Heat and Mass Transfer,2021,180:121751. doi:10.1016/j.ijheatmasstransfer.2021.121751 |
59 | AJAY S .Effect of blade profile on four-passage serpentine configuration designed to negate coriolis effect on heat and fluid flow[C]//ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition.Phoenix,U S:ASME,2019:91718. doi:10.1115/gt2019-91718 |
60 | BHARATH V R, PRASHANT S, SRINATH V E .Numerical investigation of turbulent flow and heat transfer in two-ribbed channels[J].International Journal of Thermal Sciences,2017,112:31-43. doi:10.1016/j.ijthermalsci.2016.09.034 |
61 | WILLET F T, BERGLES A E .Heat transfer in rotating narrow rectangular pin-fin ducts[J].Experimental Thermal and Fluid Science,2002,25(7):573-582. doi:10.1016/s0894-1777(01)00103-0 |
62 | CHEN I L, SAHIN I .Heat transfer in a rotating,two-pass,variable aspect ratio cooling channel with profiled C-shaped ribs[C]//ASME Turbo Expo 2020:Turbomachinery Technical Conference and Exposition.London,United Kingdom:ASME,2020:16216. doi:10.1115/gt2020-16216 |
63 | IZZET S, CHEN I L, WRIGHT L M,et al .Heat transfer in rotating,trailing edge,converging channels with smooth walls and pin-fins[C]//ASME Turbo Expo 2020:Turbomachinery Technical Conference and Exposition.London,United Kingdom:ASME,2020:14440. doi:10.1115/gt2020-14440 |
64 | MURRAY A V, IRELAND P T, ROMERO E,et al .Experimental and computational methods for the evaluation of double-wall, effusion cooling systems[J].Journal of Turbomachinery,2020,142(11):1-16. doi:10.1115/1.4047384 |
65 | SERGIY R, ARTUSHENKO A, KRAVCHENKO I,et al .Experimental investigation of two competitive pressure turbine blade cooling systems[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,USA:ASME,2017:64915. doi:10.1115/gt2017-64915 |
66 | JASON T, STRAUB D, BLACK J,et al .State of the art cooling technology for a turbine rotor blade[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,USA:ASME,2017:64728. doi:10.1115/gt2017-64728 |
[1] | 张超, 张海川, 付经伦, 童志庭, 朱俊强. 燃气轮机透平动叶横流带肋通道中气膜冷却研究进展[J]. 发电技术, 2024, 45(5): 781-792. |
[2] | 冯福媛, 李童宇, 李博, 陈衡, 潘佩媛, 徐钢, 刘彤. 基于气化和热解的医疗垃圾-废旧轮胎联合资源化利用系统性能分析[J]. 发电技术, 2024, 45(4): 611-621. |
[3] | 崔则阳, 孔祥玲, 付经伦, 施佳君. 一种基于图像的燃气轮机叶型参数测量方法[J]. 发电技术, 2024, 45(1): 106-112. |
[4] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[5] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[6] | 张弘毅, 曲立涛. 9F级燃机选择性催化还原脱硝数值模拟研究与应用[J]. 发电技术, 2023, 44(1): 78-84. |
[7] | 金云峰, 刘超, 邓高峰, 关运龙, 郝建刚, 黄海舟, 蒋东翔. 燃气轮机进气过滤系统维修周期经济性分析[J]. 发电技术, 2022, 43(1): 119-125. |
[8] | 白明亮, 张冬雪, 刘金福, 刘娇, 于达仁. 基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J]. 发电技术, 2021, 42(4): 422-430. |
[9] | 孔祥玲, 付经伦. 基于计算机视觉的三维重建技术在燃气轮机行业的应用及展望[J]. 发电技术, 2021, 42(4): 454-463. |
[10] | 邱彬, 付经伦. 燃气轮机排气扩压器研究现状[J]. 发电技术, 2021, 42(4): 437-446. |
[11] | 魏凯, 罗忠, 孙永航, 王宇. 燃气轮机带阀片引射混合器内流特性分析[J]. 发电技术, 2021, 42(4): 431-436. |
[12] | 朱华, 严彪, 刘雨松, 李亮. 湿空气透平冷却技术研究[J]. 发电技术, 2021, 42(4): 412-421. |
[13] | 管金, 何宗泽, 吕小静, 翁一武. 30kW微型燃气轮机发电机组启动实验研究[J]. 发电技术, 2021, 42(4): 404-411. |
[14] | 金云峰, 刘超, 邓高峰, 关运龙, 田鑫, 黄海舟, 蒋东翔. 燃气轮机进气压差建模方法研究[J]. 发电技术, 2021, 42(4): 395-403. |
[15] | 黄友华, 马善为, 刘吉, 武正华. 燃气轮机烟气SCR脱硝系统优化设计与工程应用[J]. 发电技术, 2021, 42(3): 350-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||