发电技术 ›› 2024, Vol. 45 ›› Issue (5): 802-813.DOI: 10.12096/j.2096-4528.pgt.24172
• 燃气轮机发电技术 • 上一篇
左秋儒1, 栾勇2, 熊逸辉1, 饶宇1
收稿日期:
2024-08-01
修回日期:
2024-09-13
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Qiuru ZUO1, Yong LUAN2, Yihui XIONG1, Yu RAO1
Received:
2024-08-01
Revised:
2024-09-13
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 燃气轮机透平叶片在高温高压环境中工作,冷却技术的有效性直接影响其性能和寿命。对旋流冷却技术的研究现状进行综述,旨在总结和评估该技术在提高冷却效率和减少热应力方面的应用,系统性地分析旋流冷却技术的基本原理及其性能表现。 方法 重点分析了旋流冷却通道设计、旋流-气膜复合冷却以及旋转条件对传热效果的影响。 结果 旋流冷却技术显著提高了叶片冷却效率,减少了热应力集中现象。具体而言,合理设计旋流冷却通道可以实现冷却流体的均匀分布,增强冷却效果,延长叶片使用寿命。 结论 旋流冷却技术在燃气轮机透平叶片冷却中的应用具有广阔前景。未来的研究应继续深入探索旋流冷却技术的优化设计及其在不同工况下的性能表现。同时,结合先进的制造技术(如增材制造),可以进一步提升旋流冷却通道的设计复杂度和冷却效率,为燃气轮机的高效稳定运行提供可靠保障。
中图分类号:
左秋儒, 栾勇, 熊逸辉, 饶宇. 燃气轮机透平叶片旋流冷却技术研究综述[J]. 发电技术, 2024, 45(5): 802-813.
Qiuru ZUO, Yong LUAN, Yihui XIONG, Yu RAO. Review of Research on Swirl Cooling Technology of Gas Turbine Blades[J]. Power Generation Technology, 2024, 45(5): 802-813.
1 | 孔祥玲,付经伦 .基于计算机视觉的三维重建技术在燃气轮机行业的应用及展望[J].发电技术,2021,42(4):454-463. doi:10.12096/j.2096-4528.pgt.21031 |
KONG X L, FU J L .Computer-vision based on three-dimensional reconstruction technology and its applications in gas turbine industry[J].Power Generation Technology,2021,42(4):454-463. doi:10.12096/j.2096-4528.pgt.21031 | |
2 | 邱彬,付经伦 .燃气轮机排气扩压器研究现状[J].发电技术,2021,42(4):437-446. |
QIU B, FU J L .Research status of gas turbine exhaust diffuser[J].Power Generation Technology,2021,42(4):437-446. | |
3 | BUNKER R S .Evolution of turbine cooling[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.Charlotte,North Carolina:ASME,2017:63205. |
4 | TERZIS A,OTT P, WOLFERSDORF J V .Detailed heat transfer distributions of narrow impingement channels for cast-in turbine airfoils[J].Journal of Turbomachinery,2014,136(9):1-9. doi:10.1115/1.4027679 |
5 | 张全斌,周琼芳 .基于“双碳”目标的中国火力发电技术发展路径研究[J].发电技术,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 |
ZHANG Q B, ZHOU Q F .Research on the development path of China’s thermal power generation technology based on the goal of “carbon peak and carbon neutralization”[J].Power Generation Technology,2023,44(2):143-154. doi:10.12096/j.2096-4528.pgt.22092 | |
6 | 朱华,严彪,刘雨松,等 .湿空气透平冷却技术研究[J].发电技术,2021,42(4):412-421. |
ZHU H, YAN B, LIU Y S,et al .Study on humid air turbine cooling technique[J].Power Generation Technology,2021,42(4):412-421. | |
7 | BUNKER R S .Gas turbine heat transfer:ten remaining hot gas path challenges[J].Journal of Turbomachinery,2007,129(2):193-201. doi:10.1115/1.2464142 |
8 | HAN J C, CHEN H C .Turbine blade internal cooling passages with rib turbulators[J].Journal of Propulsion and Power,2006,22(2):226-248. doi:10.2514/1.12793 |
9 | SEIBOLD F, LIGRANI P, WEIGAND B .Flow and heat transfer in swirl tubes:a review[J].International Journal of Heat and Mass Transfer,2022,187:122455. doi:10.1016/j.ijheatmasstransfer.2021.122455 |
10 | 范小军,杜长河,周源远,等 .复合冲击和复合旋流冷却特性的对比研究[J].工程热物理学报,2018,39(12):2627-2633. |
FAN X J, DU C H, ZHOU Y Y,et al .Comparative research for cooling behavior of composite impingement and composite vortex cooling[J].Journal of Engineering Thermophysics,2018,39(12):2627-2633. | |
11 | 刘高文,薛彪,彭力,等 .叶片前缘旋流和常规冲击对比数值研究[J].推进技术,2011,32(4):576-580. |
LIU G W, XUE B, PENG L,et al .Numerical investigation on difference between blade leading edge vortex and normal impingement cooling[J].Journal of Propulsion Technology,2011,32(4):576-580. | |
12 | 徐虹艳,张靖周,谭晓茗 .涡轮叶片尾缘内冷通道旋流冷却特性[J].航空动力学报,2014,29(1):59-66. |
XU H Y, ZHANG J Z, TAN X M .Vortex cooling performance in internal cooling channel of turbine blade trailing edge[J].Journal of Aerospace Power,2014,29(1):59-66. | |
13 | ROYDS R .Heat transmission by radiation,conduction and convection[M].New York:D. Van Nostrand,1921. |
14 | KREITH F, MARGOLIS D .Heat transfer and friction in turbulent vortex flow[J].Applied Scientific Research,1959,8(1):457-473. doi:10.1007/bf00411769 |
15 | GLEZER B, MOON H K, O'CONNELL T .A novel technique for the internal blade cooling[C]//ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition.Birmingham,UK:ASME,2015:181. |
16 | PHILLIPS J S, FIELD R E .Film coolant passage with swirl diffuser:US4669957[P].1987-06-02. |
17 | LUAN Y, DU C, FAN X,et al .Investigations of flow structures and heat transfer in a swirl chamber with different inlet chambers and various aerodynamic parameters[J].International Journal of Heat and Mass Transfer,2018,118:551-561. doi:10.1016/j.ijheatmasstransfer.2017.11.012 |
18 | SEIBOLD F, WEIGAND B .Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications[J].International Journal of Heat and Fluid Flow,2021,90:108806. doi:10.1016/j.ijheatfluidflow.2021.108806 |
19 | KUSTERER K, LIN G, BOHN D,et al .Heat transfer enhancement for gas turbine internal cooling by application of double swirl cooling chambers[C]//ASME Turbo Expo 2013:Turbine Technical Conference and Exposition.San Antonio,Texas,USA:ASME,2013:94774. doi:10.1115/gt2013-94774 |
20 | KUSTERER K, LIN G, BOHN D,et al .Leading edge cooling of a gas turbine blade with double swirl chambers[C]//ASME Turbo Expo 2014:Turbine Technical Conference and Exposition.Düsseldorf,Germany:ASME,2014:25851. doi:10.1115/gt2014-25851 |
21 | ZHOU J, WANG X, LI J,et al .Comparison between impingement/effusion and double swirl/effusion cooling performance under different effusion hole diameters[J].International Journal of Heat and Mass Transfer,2019,141:1097-1113. doi:10.1016/j.ijheatmasstransfer.2019.07.055 |
22 | ZHOU J, WANG X, LI J,et al .Effects of target channel shapes on double swirl cooling performance at gas turbine blade leading edge[J].Journal of Engineering for Gas Turbines and Power,2019,141(7):71004. doi:10.1115/1.4042311 |
23 | FAN X, LI L, ZOU J,et al .Cooling methods for gas turbine blade leading edge:comparative study on impingement cooling,vortex cooling and double vortex cooling[J].International Communications in Heat and Mass Transfer,2019,100:133-145. doi:10.1016/j.icheatmasstransfer.2018.12.017 |
24 | ALHAJERI H M, ALMUTAIRI A, ALENEZI A H,et al .Numerical investigation on heat transfer performance and flow characteristics in a roughened vortex chamber[J].Applied Thermal Engineering,2019,153:58-68. doi:10.1016/j.applthermaleng.2019.02.071 |
25 | LIU Y, RAO Y, WEIGAND B .Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface[J].International Journal of Heat and Mass Transfer,2019,128:54-65. doi:10.1016/j.ijheatmasstransfer.2018.08.097 |
26 | JING Q, XIE Y, ZHANG D .Numerical investigation on the flow and heat transfer in swirl chambers with distributed multi exit slots and dimple/protrusion structure[J].International Communications in Heat and Mass Transfer,2020,119:104923. doi:10.1016/j.icheatmasstransfer.2020.104923 |
27 | LUAN Y, RAO Y, WEIGAND B .Experimental and numerical study of heat transfer and pressure loss in a multi-convergent swirl tube with tangential jets[J].International Journal of Heat and Mass Transfer,2022,190:122797. doi:10.1016/j.ijheatmasstransfer.2022.122797 |
28 | LUAN Y, RAO Y, XU C .Experimental and numerical study on an enhanced swirl cooling with convergent tube wall and local dimple arrangements[J].International Journal of Thermal Sciences,2023,185:108083. doi:10.1016/j.ijthermalsci.2022.108083 |
29 | HAY N, WEST P D .Heat transfer in free swirling flow in a pipe[J].Journal of Heat Transfer,1975,97(3):411-416. doi:10.1115/1.3450390 |
30 | BIEGGER C, RAO Y, WEIGAND B .Flow and heat transfer measurements in swirl tubes with one and multiple tangential inlet jets for internal gas turbine blade cooling[J].International Journal of Heat and Fluid Flow,2018,73:174-187. doi:10.1016/j.ijheatfluidflow.2018.07.011 |
31 | RAO Y, BIEGGER C, WEIGAND B .Heat transfer and pressure loss in swirl tubes with one and multiple tangential jets pertinent to gas turbine internal cooling[J].International Journal of Heat and Mass Transfer,2017,106:1356-1367. doi:10.1016/j.ijheatmasstransfer.2016.10.119 |
32 | WU F, LI L, DU C,et al .Effects of circumferential nozzle number and temperature ratio on swirl cooling characteristics[J].Applied Thermal Engineering,2019,154:332-342. doi:10.1016/j.applthermaleng.2019.03.131 |
33 | FAN X, LI L, ZOU J,et al .Local heat transfer of vortex cooling with multiple tangential nozzles in a gas turbine blade leading edge cooling passage[J].International Journal of Heat and Mass Transfer,2018,126:377-389. doi:10.1016/j.ijheatmasstransfer.2018.06.018 |
34 | WANG N, CHEN A F, ZHANG M,et al .Turbine blade leading edge cooling with one row of normal or tangential impinging jets[J].Journal of Heat Transfer,2018,140(6):62201. doi:10.1115/1.4038691 |
35 | LIU Z, LI J, FENG Z,et al .Numerical study on the effect of jet nozzle aspect ratio and jet angle on swirl cooling in a model of a turbine blade leading edge cooling passage[J].International Journal of Heat and Mass Transfer,2015,90:986-1000. doi:10.1016/j.ijheatmasstransfer.2015.07.050 |
36 | WANG N, HAN J C .Swirl impinging cooling on an airfoil leading edge model at large Reynolds number[J].Journal of Thermal Science and Engineering Applications,2019,11(3):31006. doi:10.1115/1.4042151 |
37 | DARVISH DAMAVANDI M, MOUSAVI S M, SAFIKHANI H .Pareto optimal design of swirl cooling chambers with tangential injection using CFD,GMDH-type of ANN and NSGA-II algorithm[J].International Journal of Thermal Sciences,2017,122:102-114. doi:10.1016/j.ijthermalsci.2017.08.016 |
38 | CHANG C Y, JAKIRLIĆ S, DIETRICH K,et al .Swirling flow in a tube with variably-shaped outlet orifices:an LES and VLES study[J].International Journal of Heat and Fluid Flow,2014,49:28-42. doi:10.1016/j.ijheatfluidflow.2014.05.008 |
39 | PAIK J, SOTIROPOULOS F .Numerical simulation of strongly swirling turbulent flows through an abrupt expansion[J].International Journal of Heat and Fluid Flow,2010,31(3):390-400. doi:10.1016/j.ijheatfluidflow.2010.02.025 |
40 | BRUSCHEWSKI M, SCHERHAG C, SCHIFFER H P,et al .Influence of channel geometry and flow variables on cyclone cooling of turbine blades[J].Journal of Turbomachinery,2016,138(6):61005. doi:10.1115/1.4032363 |
41 | BRUSCHEWSKI M, GRUNDMANN S, SCHIFFER H P .Considerations for the design of swirl chambers for the cyclone cooling of turbine blades and for other applications with high swirl intensity[J].International Journal of Heat and Fluid Flow,2020,86:108670. doi:10.1016/j.ijheatfluidflow.2020.108670 |
42 | NUTTALL J B .Axial flow in a vortex[J].Nature,1953,172:582-583. doi:10.1038/172582a0 |
43 | JOHNSON B, TIAN W, ZHANG K,et al .An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP techniques[J].International Journal of Heat and Mass Transfer,2014,76:337-349. doi:10.1016/j.ijheatmasstransfer.2014.04.028 |
44 | 李佳,任静,蒋洪德 .密度比和吹风比对透平静叶气膜冷却的影响[J].工程热物理学报,2011,32(8):1295-1298. |
LI J, REN J, JIANG H D .Effects of density ratio and blowing ratio on the film cooling effectiveness on a turbine vane[J].Journal of Engineering Thermophysics,2011,32(8):1295-1298. | |
45 | 刘钊,贾哲,张志欣,等 .透平动叶前缘冲击-气膜复合冷却与旋流-气膜复合冷却的热流耦合对比研究[J].西安交通大学学报,2021,55(4):116-125. |
LIU Z, JIA Z, ZHANG Z X,et al .A comparative study on conjugate heat transfer of impingement-film composite cooling and swirl-film composite cooling on leading edge of a turbine blade[J].Journal of Xi’an Jiaotong University,2021,55(4):116-125. | |
46 | ZHANG M, WANG N, HAN J C .Internal heat transfer of film-cooled leading edge model with normal and tangential impinging jets[J].International Journal of Heat and Mass Transfer,2019,139:193-204. doi:10.1016/j.ijheatmasstransfer.2019.04.140 |
47 | TAKEISHI K, KOMIYAMA M,ODA Y,et al .Aerothermal investigations on mixing flow field of film cooling with swirling coolant flow[J].Journal of Turbomachinery,2014,136(5):51001. doi:10.1115/1.4023909 |
48 | TAKEISHI K,ODA Y, EGAWA Y,et al .Film cooling with swirling coolant flow controlled by impingement cooling in a closed cavity[C]//ASME Power Conference 2011.Denver,Colorado,USA:ASME,2011:489-498. doi:10.1115/power2011-55390 |
49 | TAKEISHI K,ODA Y, EGAWA Y,et al .Film cooling with swirling coolant flow[C]//Advanced Computational Methods and Experiments in Heat Transfer XI.Tallinn,Estonia:WIT Press,2010:189-200. doi:10.2495/ht100171 |
50 | WANG J, LI L, LI J,et al .Numerical investigation on flow and heat transfer characteristics of vortex cooling in an actual film-cooled leading edge[J].Applied Thermal Engineering,2021,185:115942. doi:10.1016/j.applthermaleng.2020.115942 |
51 | JIANG Y, YUE G, DONG P,et al .Investigation on film cooling with swirling coolant flow by optimizing the inflow chamber[J].International Communications in Heat and Mass Transfer,2017,88:99-107. doi:10.1016/j.icheatmasstransfer.2017.08.008 |
52 | DU H, MEI Z, ZOU J,et al .Conjugate heat transfer investigation on swirl-film cooling at the leading edge of a gas turbine vane[J].Entropy,2019,21(10):1007. doi:10.3390/e21101007 |
53 | FAN X, DU C, LI L,et al .Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behavior for gas turbine blade leading edge[J].Applied Thermal Engineering,2017,112:472-483. doi:10.1016/j.applthermaleng.2016.10.059 |
54 | LUAN Y, RAO Y, YAN H .Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes[J].International Journal of Heat and Mass Transfer,2023,201:123633. doi:10.1016/j.ijheatmasstransfer.2022.123633 |
55 | RAO Y, LUAN Y, XU Y M .Turbine blade with improved swirl cooling performance at leading edge and engine:US18304387[P].2024-01-20. |
56 | 李菲 .涡轮叶片前缘强化旋流-气膜复合高效冷却研究[D].上海:上海交通大学,2024. |
LI F .Study on aerothermodynamics of enhanced swirl-film cooling for gas turbine blade leading edge[D].Shanghai:Shanghai Jiao Tong University,2024. | |
57 | YANG W, PU J, WANG J .The combined effects of an upstream ramp and swirling coolant flow on film cooling characteristics[J].Journal of Turbomachinery,2016,138(11):111008. doi:10.1115/1.4033292 |
58 | KONG D H, ZHANG C X, MA Z Y,et al .Numerical study on flow and heat transfer characteristics of swirling jet on a dimpled surface with effusion holes at turbine blade leading edge[J].Applied Thermal Engineering,2022,209:118243. doi:10.1016/j.applthermaleng.2022.118243 |
59 | SINGH P, LI W, EKKAD S V,et al .A new cooling design for rib roughened two-pass channel having positive effects of rotation on heat transfer enhancement on both pressure and suction side internal walls of a gas turbine blade[J].International Journal of Heat and Mass Transfer,2017,115:6-20. doi:10.1016/j.ijheatmasstransfer.2017.07.128 |
60 | YANG S F, WU H W, HAN J C,et al .Heat transfer in a smooth rotating multi-passage channel with hub turning vane and trailing-edge slot ejection[J].International Journal of Heat and Mass Transfer,2017,109:1-15. doi:10.1016/j.ijheatmasstransfer.2017.01.059 |
61 | YERANEE K, RAO Y .A review of recent studies on rotating internal cooling for gas turbine blades[J].Chinese Journal of Aeronautics,2021,34(7):85-113. doi:10.1016/j.cja.2020.12.035 |
62 | WANG K, XU G, TAO Z,et al .Local heat transfer of jet impingement cooling with film extraction flow in a rotating cavity[J].Journal of Enhanced Heat Transfer,2011,18(5):389-401. doi:10.1615/jenhheattransf.2011003265 |
63 | DENG H, GU Z, ZHU J,et al .Experiments on impingement heat transfer with film extraction flow on the leading edge of rotating blades[J].International Journal of Heat and Mass Transfer,2012,55(21/22):5425-5435. doi:10.1016/j.ijheatmasstransfer.2012.04.051 |
64 | 毛军逵,白云峰,常海萍,等 .旋转半受限单孔冲击局部换热特性实验[J].航空动力学报,2007,22(10):1593-1597. |
MAO J K, BAI Y F, CHANG H P,et al .Experimental investigations on the local heat transfer coefficient of rotating single circular impingement in a half-limited space[J].Journal of Aerospace Power,2007,22(10):1593-1597. | |
65 | LAMONT J A, EKKAD S V, ALVIN M A .Effects of rotation on heat transfer for a single row jet impingement array with crossflow[J].Journal of Heat Transfer,2012,134(8):1. doi:10.1115/1.4006167 |
66 | LAMONT J A, EKKAD S V .Effect of rotation on jet impingement heat transfer for various jet configurations[C]//ASME Summer Heat Transfer Conference 2012.Rio Grande,Puerto Rico,USA:ASME,2012:717-726. doi:10.1115/ht2012-58023 |
67 | CHANG S W, YU K C .Thermal performance of radially rotating trapezoidal channel with impinging jet-row[J].International Journal of Heat and Mass Transfer,2019,136:246-264. doi:10.1016/j.ijheatmasstransfer.2019.02.098 |
68 | DENG H, LI H, XU J .Heat transfer in an impingement cooling channel under isothermal boundaries at high rotation numbers[J].International Journal of Heat and Mass Transfer,2022,182:121940. doi:10.1016/j.ijheatmasstransfer.2021.121940 |
69 | DENG H, WANG J, BAI L,et al .Heat transfer characteristics in a rotating wedge-shaped ribbed trailing edge with impingement jet[J].Experimental Heat Transfer,2021,34(1):18-35. doi:10.1080/08916152.2020.1713256 |
70 | DENG H, WANG Z, WANG J,et al .Flow and heat transfer in a rotating channel with impingement cooling and film extraction[J].International Journal of Heat and Mass Transfer,2021,180:121751. doi:10.1016/j.ijheatmasstransfer.2021.121751 |
71 | JUNG E Y, PARK C U, LEE D H,et al .Effect of rotation on heat transfer of a concave surface with array impingement jet[C]//ASME Turbo Expo:Turbine Technical Conference and Exposition 2013.San Antonio,Texas,USA:ASME,2013:V03 AT 12A04. doi:10.1115/gt2013-95443 |
72 | ELSTON C A, WRIGHT L M .Leading edge jet impingement under high rotation numbers[J].Journal of Thermal Science and Engineering Applications,2017,9(2):21010. doi:10.1115/1.4035892 |
73 | HONG S K, LEE D H, CHO H H,et al .Local heat/mass transfer measurements on effusion plates in impingement/effusion cooling with rotation[J].International Journal of Heat and Mass Transfer,2010,53(7/8):1373-1379. doi:10.1016/j.ijheatmasstransfer.2009.12.022 |
74 | HONG S K, LEE D H, CHO H H .Effect of jet direction on heat/mass transfer of rotating impingement jet[J].Applied Thermal Engineering,2009,29(14/15):2914-2920. doi:10.1016/j.applthermaleng.2009.02.014 |
75 | HONG S K, LEE D H, CHO H H .Heat/mass transfer in rotating impingement/effusion cooling with rib turbulators[J].International Journal of Heat and Mass Transfer,2009,52(13/14):3109-3117. doi:10.1016/j.ijheatmasstransfer.2009.01.031 |
76 | SINGH P, EKKAD S V .Detailed heat transfer measurements of jet impingement on dimpled target surface under rotation[J].Journal of Thermal Science and Engineering Applications,2018,10(3):31006. doi:10.1115/1.4039054 |
[1] | 张超, 张海川, 付经伦, 童志庭, 朱俊强. 燃气轮机透平动叶横流带肋通道中气膜冷却研究进展[J]. 发电技术, 2024, 45(5): 781-792. |
[2] | 任静, 李雪英. 燃气轮机透平叶片旋转内部冷却通道研究现状与发展趋势[J]. 发电技术, 2024, 45(5): 793-801. |
[3] | 冯福媛, 李童宇, 李博, 陈衡, 潘佩媛, 徐钢, 刘彤. 基于气化和热解的医疗垃圾-废旧轮胎联合资源化利用系统性能分析[J]. 发电技术, 2024, 45(4): 611-621. |
[4] | 崔则阳, 孔祥玲, 付经伦, 施佳君. 一种基于图像的燃气轮机叶型参数测量方法[J]. 发电技术, 2024, 45(1): 106-112. |
[5] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[6] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[7] | 张弘毅, 曲立涛. 9F级燃机选择性催化还原脱硝数值模拟研究与应用[J]. 发电技术, 2023, 44(1): 78-84. |
[8] | 金云峰, 刘超, 邓高峰, 关运龙, 郝建刚, 黄海舟, 蒋东翔. 燃气轮机进气过滤系统维修周期经济性分析[J]. 发电技术, 2022, 43(1): 119-125. |
[9] | 白明亮, 张冬雪, 刘金福, 刘娇, 于达仁. 基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J]. 发电技术, 2021, 42(4): 422-430. |
[10] | 孔祥玲, 付经伦. 基于计算机视觉的三维重建技术在燃气轮机行业的应用及展望[J]. 发电技术, 2021, 42(4): 454-463. |
[11] | 邱彬, 付经伦. 燃气轮机排气扩压器研究现状[J]. 发电技术, 2021, 42(4): 437-446. |
[12] | 魏凯, 罗忠, 孙永航, 王宇. 燃气轮机带阀片引射混合器内流特性分析[J]. 发电技术, 2021, 42(4): 431-436. |
[13] | 朱华, 严彪, 刘雨松, 李亮. 湿空气透平冷却技术研究[J]. 发电技术, 2021, 42(4): 412-421. |
[14] | 管金, 何宗泽, 吕小静, 翁一武. 30kW微型燃气轮机发电机组启动实验研究[J]. 发电技术, 2021, 42(4): 404-411. |
[15] | 金云峰, 刘超, 邓高峰, 关运龙, 田鑫, 黄海舟, 蒋东翔. 燃气轮机进气压差建模方法研究[J]. 发电技术, 2021, 42(4): 395-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||