发电技术 ›› 2024, Vol. 45 ›› Issue (5): 781-792.DOI: 10.12096/j.2096-4528.pgt.24186
• 燃气轮机发电技术 •
张超1,2, 张海川1,2, 付经伦3,4, 童志庭1,2, 朱俊强3,4
收稿日期:
2024-08-20
修回日期:
2024-10-01
出版日期:
2024-10-31
发布日期:
2024-10-29
作者简介:
基金资助:
Chao ZHANG1,2, Haichuan ZHANG1,2, Jinglun FU3,4, Zhiting TONG1,2, Junqiang ZHU3,4
Received:
2024-08-20
Revised:
2024-10-01
Published:
2024-10-31
Online:
2024-10-29
Supported by:
摘要:
目的 燃气轮机透平进口温度已经远超叶片材料的许用温度,发展更加高效的透平冷却技术,尤其是气膜冷却技术至关重要。在透平动叶中部区域的气膜冷却通常由横流带肋通道供应,因此对近年来横流带肋通道中气膜冷却研究进展进行了综述。 方法 介绍了不同冷气供应方式下气膜冷却性能的差异,归纳了肋片角度、肋片形式、气膜孔与肋片的相对位置、横流通道进口雷诺数对流动和气膜冷却性能的影响,总结了针对横流带肋冷气条件下气膜孔型设计的研究进展。 结果 横流带肋通道内部冷却结构和横流通道进口雷诺数对气膜冷却性能影响显著,横流进气改变了孔出口下游的冷却效率分布,同时孔进口处流动受气膜孔与肋片的相对位置及雷诺数变化的影响。展向非对称气膜孔型和对横流进气不敏感的气膜孔型可有效提升气膜冷却性能。 结论 为进一步推动横流带肋通道气膜冷却技术的发展,建议深入研究各影响因素与气膜冷却性能之间的关系,并对适用于横流带肋进气的专用气膜孔型进行优化设计。
中图分类号:
张超, 张海川, 付经伦, 童志庭, 朱俊强. 燃气轮机透平动叶横流带肋通道中气膜冷却研究进展[J]. 发电技术, 2024, 45(5): 781-792.
Chao ZHANG, Haichuan ZHANG, Jinglun FU, Zhiting TONG, Junqiang ZHU. Research Progress on Film Cooling Fed by Crossflow Ribbed Passage of Gas Turbine Blades[J]. Power Generation Technology, 2024, 45(5): 781-792.
来源 | 肋角度 | 冷却性能较优的肋角度 |
---|---|---|
文献[ | 60°, 120° | 120° |
文献[ | 45°, 135° | 135° |
文献[ | 45°, 135° | 135° |
文献[ | 45°, 60°, 90°, 120°, 135° | 45°, 135° |
表1 斜置直肋片的角度和冷却性能较优的肋角度
Tab. 1 Angles of inclined straight ribs and the angles of ribs with better cooling performance
来源 | 肋角度 | 冷却性能较优的肋角度 |
---|---|---|
文献[ | 60°, 120° | 120° |
文献[ | 45°, 135° | 135° |
文献[ | 45°, 135° | 135° |
文献[ | 45°, 60°, 90°, 120°, 135° | 45°, 135° |
来源 | 肋片形式 | 连续或间断形式 |
---|---|---|
文献[ | 45°斜置肋 | 连续 |
文献[ | 60°斜置肋 | 连续 |
文献[ | 直肋 | 连续、中间间断、侧向间断 |
文献[ | 直肋、V形肋 | 连续 |
文献[ | 正负V形肋 | 连续 |
文献[ | 90°直肋、正负月牙形肋 | 连续 |
文献[ | 方形肋、圆形肋 | 连续 |
表2 不同形式的肋片结构对比
Tab. 2 Comparison of different rib configurations
来源 | 肋片形式 | 连续或间断形式 |
---|---|---|
文献[ | 45°斜置肋 | 连续 |
文献[ | 60°斜置肋 | 连续 |
文献[ | 直肋 | 连续、中间间断、侧向间断 |
文献[ | 直肋、V形肋 | 连续 |
文献[ | 正负V形肋 | 连续 |
文献[ | 90°直肋、正负月牙形肋 | 连续 |
文献[ | 方形肋、圆形肋 | 连续 |
1 | 孔祥玲,付经伦 .基于计算机视觉的三维重建技术在 燃气轮机行业的应用及展望[J].发电技术,2021,42(4):454-463. |
KONG X L, FU J L .Computer-vision based on three-dimensional reconstruction technology and its applications in gas turbine industry[J]. Power Generation Technology,2021,42(4):454-463. | |
2 | 白明亮,张冬雪,刘金福,等 .基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J].发电技术,2021,42(4):422-430. doi:10.12096/j.2096-4528.pgt.21021 |
BAI M L, ZHANG D X, LIU J F,et al .Anomaly detection of gas turbine hot components based on deep autoencoder and support vector data description[J].Power Generation Technology,2021,42(4):422-430. doi:10.12096/j.2096-4528.pgt.21021 | |
3 | TOWN J, STRAUB D, BLACK J,et al .State-of-the-art cooling technology for a turbine rotor blade[J].Journal of Turbomachinery,2018,140(7):71007. doi:10.1115/1.4039942 |
4 | WILFERT G, WOLFF S . Influence of internal flow on film cooling effectiveness[J].Journal of Turbomachinery,2000,122(2):327-333. doi:10.1115/1.555449 |
5 | 骆剑霞 .涡轮叶片内冷结构对外部气膜冷却特性的影响研究[D].西安:西北工业大学,2015. |
LUO J X .Study on the influence of internal cooling Structure of turbine blades on the cooling characteristics of external gas film[D].Xi’an:Northwestern Polytechnical University,2015. | |
6 | 刘存良,宋辉,郭涛,等 .带肋横流进气方式下气膜孔的流阻特性与机理研究[J].推进技术,2016,37(7):1320-1327. |
LIU C L, SONG H, GUO T,et al .Flow resistance characteristics and mechanism of film cooling holes with ribbed crossflow[J].Journal of Propulsion Technology,2016,37(7):1320-1327. | |
7 | ZHANG C, BAI L, FU J,et al . Discharge coefficients and aerodynamic losses for cylindrical and cratered film-cooling holes with various coolant crossflow orientations[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43:161. doi:10.1007/s40430-021-02891-z |
8 | GRITSCH M, SCHULZ A, WITTIG S .Effect of internal coolant crossflow on the effectiveness of shaped film-cooling holes[J].Journal of Turbomachinery,2003,125(3):547-554. doi:10.1115/1.1580523 |
9 | FRAAS M, GLASENAPP T, SCHULZ A,et al . Film cooling measurements for a laidback fan-shaped hole:effect of coolant crossflow on cooling effectiveness and heat transfer[J].Journal of Turbomachinery,2019,141(4):41006. doi:10.1115/1.4041655 |
10 | QENAWY M, ZHOU W, LIU Y .Effects of crossflow-fed-shaped holes on the adiabatic film cooling effectiveness[J].International Journal of Thermal Sciences,2022,177:107578. doi:10.1016/j.ijthermalsci.2022.107578 |
11 | ZAMIRI A, CHUNG J T .Large eddy simulation of internal coolant crossflow orientation effects on film-cooling effectiveness of fan-shaped holes[J].International Journal of Heat and Mass Transfer,2022,190:122778. doi:10.1016/j.ijheatmasstransfer.2022.122778 |
12 | ZHANG C, ZHANG P F, JU P F .Film cooling for a cylindrical hole with downstream crescent-shaped block with perpendicular crossflow[J].Journal of Engineering Physics and Thermophysics,2022,95(3):599-607. doi:10.1007/s10891-022-02516-9 |
13 | ZHU H, XIE G, ZHU R,et al .Comparisons on flow characteristics and film cooling performance of cylindrical and sister holes with/without internal coolant crossflow[J].International Journal of Thermal Sciences,2022,182:107791. doi:10.1016/j.ijthermalsci.2022.107791 |
14 | ZHANG C, BAI L, TONG Z,et al .Film cooling performance for the cratered film-cooling holes with various coolant crossflow orientations[J].Numerical Heat Transfer,2021,81(1/2):15-30. doi:10.1080/10407782.2021.1969801 |
15 | 刘昊阳,杜强,徐庆宗,等 .冷气横流下复合角扩张孔的气膜冷却特性研究[J].工程热物理学报,2023,44(10):2685-2695. |
LIU H Y, DU Q, XU Q Z,et al .Investigation of the film cooling of the fan-shaped hole with compound angle under coolant crossflow condition[J].Journal of Engineering Thermophysics,2023,44(10):2685-2695. | |
16 | 张粜,浦健,徐帅,等 .横流下前向与反向复合角沟槽孔气膜冷却效率[J].工程热物理学报,2021,42(5):1161-1167. |
ZHANG T, PU J, XU S,et al .Film cooling effectiveness of forward and backward compound-angled trench-holes under coolant cross-flow effects[J].Journal of Engineering Thermophysics,2021,42(5):1161-1167. | |
17 | PENG W, SUN X, JIANG P,et al .Effect of ribbed and smooth coolant cross-flow channel on film cooling[J].Nuclear Engineering and Design,2017,316:186-197. doi:10.1016/j.nucengdes.2017.03.015 |
18 | AGATA Y, TAKAHASHI T, SAKAI E,et al .Numerical evaluation of influence of internal ribs on heat transfer in flat plate film cooling[C]//Turbo Expo:Power for Land,Sea,and Air.USA:American Society of Mechanical Engineers,2013,55157:V03 BT 13A053. doi:10.1115/gt2013-95450 |
19 | 骆剑霞,朱惠人,刘存良,等 .肋角度对气膜冷却特性的影响[J].航空动力学报,2014,29(7):1615-1622. |
LUO J X, ZHU H R, LIU C L,et al .Effect of rib orientation on film cooling performance[J].Journal of Aerospace Power,2014,29 (7):1615-1622. | |
20 | LIU C, YE L, ZHU H,et al .Investigation on the effects of rib orientation angle on the film cooling with ribbed cross-flow coolant channel[J].International Journal of Heat and Mass Transfer,2017,115:379-394. doi:10.1016/j.ijheatmasstransfer.2017.08.063 |
21 | KLAVETTER S R, MCCLINTIC J W, BOGARD D G,et al .The effect of rib turbulators on film cooling effectiveness of round compound angle holes fed by an internal cross-flow[J].Journal of Turbomachinery,2016,138(12):121006. doi:10.1115/1.4032928 |
22 | 邓贺方 .横流进气对气膜冷却特性的影响研究[D].哈尔滨:哈尔滨工程大学,2021. |
DENG H F .Investigation on effect of crossflow feeding on film cooling characteristics[D].Harbin:Harbin Engineering University,2021. | |
23 | 白伟 .垂直带肋通道中凹坑气膜孔的流动及冷却特性研究[D].天津:天津理工大学,2023. |
BAI W .Investigation on flow and cooling characteristics of the cratered film-cooling hole combined with ribbed cross-flow channel[D]. Tianjin:Tianjin University of Technology,2023. | |
24 | 陆犇,姜培学 .带肋气膜冷却平板的数值模拟研究[J].工程热物理学报,2005,26(5):844-846. |
LU B, JIANG P X .Numerical investigation of the heat transfer for a film cooled flat plate[J].Journal of Engineering Thermophysics,2005,26(5):844-846. | |
25 | 李广超,朱惠人,郭涛 .带60度肋和气膜孔矩形通道换热研究[J]. 航空动力学报,2006(6):45-50. |
LI G C, ZHU H R, GUO T .Heat transfer in the rectangular passage with 60-degree ribs and film holes[J]. Journal of Aerospace Power,2006(6):45-50. | |
26 | XIE G, LIU X, YAN H .Film cooling performance and flow characteristics of internal cooling channels with continuous/truncated ribs[J].International Journal of Heat and Mass Transfer,2017:105:67-75. doi:10.1016/j.ijheatmasstransfer.2016.09.065 |
27 | WANG J, GU C, SUNDEN B A .Conjugated heat transfer analysis of a film cooling passage with different rib configurations[J].International Journal of Numerical Methods for Heat & Fluid Flow,2015,25(4):841-860. doi:10.1108/hff-04-2014-0110 |
28 | LIU X, ZHANG G, SUNDEN B,et al .Numerical predictions of flow and heat transfer of film cooling with an internal channel roughened by crescent ribs[J].Numerical Heat Transfer,2018,74(9):1539-1564. doi:10.1080/10407782.2018.1538291 |
29 | WANG K, JIA X, WANG Y,et al .Impact of V-shaped interrupted ribs in cross-flow channels on film cooling[J].Thermal Science,2024,28:3093-3106. doi:10.2298/tsci240119135w |
30 | BUNKER R S, BAILEY J C .Film cooling discharge coefficient measurements in a turbulated passage with internal crossflow[J].Journal of Turbomachinery,2001,123(4):774-780. doi:10.1115/1.1397307 |
31 | ZHANG G H, LIU X T, SUNDEN B .Computational analysis of span-wise hole locations on fluid flow and film cooling of internal channels with crescent ribs[J].International Journal of Numerical Methods for Heat & Fluid Flow,2019,29(8):2728-2753. doi:10.1108/hff-09-2018-0474 |
32 | LIU C, LI B, YE L,et al .Film cooling characteristics of cross-flow coolant passage with various relative positions of holes and inclined ribs[J].International Journal of Thermal Sciences,2021,167:106975. doi:10.1016/j.ijthermalsci.2021.106975 |
33 | JEON S,SON C .Comparative numerical study of the influence of film hole location of ribbed cooling channel on internal and external heat transfer[J].Energies,2021,14(15):4689. doi:10.3390/en14154689 |
34 | 徐光耀 .垂直带肋通道中槽型截面孔的气膜冷却特性研究[D].北京:中国科学院大学(中国科学院工程热物理研究所),2020. |
XU G Y .Investigation on film cooling characteristics of slot-sectional film holes combined with ribbed cross-flow channels[D].Beijing:University of Chinese Academy of Sciences (Institute of Engineering Thermophysics,Chinese Academy of Sciences),2020. | |
35 | YE L, LIU C, ZHU H,et al .Experimental investigation on effect of cross-flow Reynolds number on film cooling effectiveness[J].AIAA Journal,2019,57(11):4804-4818. doi:10.2514/1.j057943 |
36 | LIU C, XIE G, ZHU H,et al .Effect of internal coolant crossflow on the film cooling performance of converging slot hole[J].International Journal of Thermal Sciences,2020,154:106385. doi:10.1016/j.ijthermalsci.2020.106385 |
37 | LI L, LIU C, YE L,et al .Experimental investigation on effects of cross-flow Reynolds number and blowing ratios to film cooling performance of the Y-shaped hole[J].International Journal of Heat and Mass Transfer,2021,179:121682. doi:10.1016/j.ijheatmasstransfer.2021.121682 |
38 | KISSEL H P, WEIGAND B, VON WOLFERSDORF J,et al .An experimental and numerical investigation of the effect of cooling channel crossflow on film cooling performance[C]//Turbo Expo:Power for Land,Sea,and Air.Canada:AMSE,2007,47934:147-158. doi:10.1115/gt2007-27102 |
39 | 刘存良,宋辉,郭涛,等 .带肋横流进气方式下的圆柱形孔气膜冷却特性[J].工程热物理学报,2015,36(10):2211-2216. |
LIU C L, SONG H, GUO T,et al .Flim cooling characteristics of cylindrical holes with ribbed crossflow [J].Journal of Engineering Thermophysics,2015,36(10):2211-2216. | |
40 | KUNZE M, VOGELER K .Flow field investigations on the effect of rib placement in a cooling channel with film-cooling[J].Journal of Turbomachinery,2014,136(3):31009. doi:10.1115/1.4024691 |
41 | MCCLINTIC J W, ANDERSON J B, BOGARD D G,et al .Effect of internal crossflow velocity on film cooling effectiveness:part I:axial shaped holes[J]. Journal of Turbomachinery,2018,140(1):11003. doi:10.1115/1.4037997 |
42 | 张陆新,南春雷,尤国林,等 .横流通道对气膜冷却性能影响的数值研究[J].科技与创新,2018(13):104-105. |
ZHANG L X, NAN C L, YOU G L,et al . Numerical study of the effect of cross-flow channel on the cooling performance of gas film[J]. Science and Technology Innovation,2018(13):104-105. | |
43 | 张超,白林超,童志庭,等 .一种展向非对称的凹坑气膜冷却孔型:CN112031877B[P].2022-08-09. |
ZHANG C, BAI L C, TONG Z T,et al .An asymmetrical spanwise contoured film cooling hole:CN112031877B[P].2022-08-09. | |
44 | 安柏涛,胡佳君 .中心不对称气膜冷却结构及透平叶片:CN2023109310356[P].2023-07-27. doi:10.1115/gt2023-104261 |
AN B T, HU J J .The asymmetrical film cooling structure and cooling blade:CN2023109310356[P].2023-07-27. doi:10.1115/gt2023-104261 | |
45 | 安柏涛,胡佳君 .配置有垂直槽形气膜孔的冷却结构及涡轮叶片:CN2023113634517[P].2023-10-20. |
AN B T, HU J J .Cooling structure of vertically oriented slot cross-section diffusion holes and turbine blade:CN2023113634517[P].2023-10-20. | |
46 | HU J J, AN B T .Effects of ribbed crossflow channel in a turbine blade on film cooling performance of diffusion slot holes with various cross section orientations[J].Journal of Turbomachinery,2025,147(1):11003. doi:10.1115/1.4066144 |
47 | HU J J, AN B T .Multirow film-cooling effectiveness of vertically oriented slot cross-section diffusion holes on a turbine nozzle vane suction surface[C]//Turbo Expo:Power for Land,Sea,and Air.United Kingdom:AMSE,2024,87998:V007T12A017. doi:10.1115/gt2024-124139 |
[1] | 冯福媛, 李童宇, 李博, 陈衡, 潘佩媛, 徐钢, 刘彤. 基于气化和热解的医疗垃圾-废旧轮胎联合资源化利用系统性能分析[J]. 发电技术, 2024, 45(4): 611-621. |
[2] | 崔则阳, 孔祥玲, 付经伦, 施佳君. 一种基于图像的燃气轮机叶型参数测量方法[J]. 发电技术, 2024, 45(1): 106-112. |
[3] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[4] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[5] | 张弘毅, 曲立涛. 9F级燃机选择性催化还原脱硝数值模拟研究与应用[J]. 发电技术, 2023, 44(1): 78-84. |
[6] | 金云峰, 刘超, 邓高峰, 关运龙, 郝建刚, 黄海舟, 蒋东翔. 燃气轮机进气过滤系统维修周期经济性分析[J]. 发电技术, 2022, 43(1): 119-125. |
[7] | 白明亮, 张冬雪, 刘金福, 刘娇, 于达仁. 基于深度自编码器和支持向量数据描述的燃气轮机高温部件异常检测[J]. 发电技术, 2021, 42(4): 422-430. |
[8] | 孔祥玲, 付经伦. 基于计算机视觉的三维重建技术在燃气轮机行业的应用及展望[J]. 发电技术, 2021, 42(4): 454-463. |
[9] | 邱彬, 付经伦. 燃气轮机排气扩压器研究现状[J]. 发电技术, 2021, 42(4): 437-446. |
[10] | 魏凯, 罗忠, 孙永航, 王宇. 燃气轮机带阀片引射混合器内流特性分析[J]. 发电技术, 2021, 42(4): 431-436. |
[11] | 朱华, 严彪, 刘雨松, 李亮. 湿空气透平冷却技术研究[J]. 发电技术, 2021, 42(4): 412-421. |
[12] | 管金, 何宗泽, 吕小静, 翁一武. 30kW微型燃气轮机发电机组启动实验研究[J]. 发电技术, 2021, 42(4): 404-411. |
[13] | 金云峰, 刘超, 邓高峰, 关运龙, 田鑫, 黄海舟, 蒋东翔. 燃气轮机进气压差建模方法研究[J]. 发电技术, 2021, 42(4): 395-403. |
[14] | 黄友华, 马善为, 刘吉, 武正华. 燃气轮机烟气SCR脱硝系统优化设计与工程应用[J]. 发电技术, 2021, 42(3): 350-356. |
[15] | 方继辉,王荣. 重型F级燃气轮机IGV开度对压气机效率的影响[J]. 发电技术, 2020, 41(3): 317-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||