发电技术 ›› 2026, Vol. 47 ›› Issue (1): 145-156.DOI: 10.12096/j.2096-4528.pgt.260113

• 发电及环境保护 • 上一篇    

流向微肋气膜冷却布局对涡轮动叶凹槽状叶顶传热冷却性能的影响

李世涵1, 白波1, 程国强1,2,3, 许承天1, 孔祥林2,3, 李志刚1, 李军1   

  1. 1.西安交通大学叶轮机械研究所,陕西省 西安市 710049
    2.东方电气集团东方汽轮机有限公司,四川省 德阳市 618000
    3.清洁高效透平动力装备全国重点实验室,四川省 德阳市 618000
  • 收稿日期:2025-01-03 修回日期:2025-03-08 出版日期:2026-02-28 发布日期:2026-02-12
  • 通讯作者: 李军
  • 作者简介:李世涵(2001),男,硕士研究生,研究方向为气动热力学与传热冷却,3527785254@qq.com
    李军(1971),男,博士,教授,研究方向为透平机械密封技术、气动热力学与传热冷却、SCO2透平技术,本文通信作者,junli@mail.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51936008)

Effect of Streamwise Micro-Rib Film Cooling Arrangements on Heat Transfer and Cooling Performance of Cavity Turbine Blade Tips

Shihan LI1, Bo BAI1, Guoqiang CHENG1,2,3, Chengtian XU1, Xianglin KONG2,3, Zhigang LI1, Jun LI1   

  1. 1.Institute of Turbomachinery, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, China
    2.Dongfang Electric Corporation Dongfang Turbine Co. , Ltd. , Deyang 618000, Sichuan Province, China
    3.State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, Sichuan Province, China
  • Received:2025-01-03 Revised:2025-03-08 Published:2026-02-28 Online:2026-02-12
  • Contact: Jun LI
  • Supported by:
    National Natural Science Foundation of China(51936008)

摘要:

目的 为了提高叶顶传热冷却性能,探究叶顶凹槽中弧线微肋对冷气的诱导作用及对叶顶传热性能的影响,采用数值求解三维雷诺平均奈维-斯托克(Reynolds averaged Navier-Stokes,RANS)方程和标准k-ω湍流模型的方法,研究了流向微肋气膜冷却布局对涡轮动叶凹槽状叶顶传热冷却性能的影响。 方法 基于GE-E3高压涡轮第一级动叶凹槽状叶顶,依据前人经验,设计了前缘及尾缘大孔径气膜孔和中弦近压力侧2个小孔径气膜孔的叶顶气膜冷却布局(case 1),随后在冷气稀薄的中弦近吸力侧添加了2个小孔径气膜孔,并将中弦4个气膜孔放置在3个位置探究气膜孔位置的影响,3个位置冷却布局分别添加一个30%弧长的中弧线微肋,探究微肋结构的影响。 结果 与case 1相比,将微肋放在凹槽前缘位置可以降低0.9%的叶顶泄漏量和0.5%的流道出口截面总压损失,将微肋放在靠近尾缘的位置可以降低8%的叶顶传热系数,若不考虑微肋表面,则能降低16%的叶顶传热系数,同时该位置的流向微肋气膜冷却布局具有0.43的气膜冷却有效度和最优的冷却均匀度。 结论 研究结果可为燃气轮机高性能叶顶结构的耦合设计提供参考。

关键词: 燃气轮机, 流向微肋, 凹槽状叶顶, 传热系数, 气膜冷却有效度, 冷却性能, 雷诺平均奈维-斯托克方程

Abstract:

Objectives To enhance the heat transfer and cooling performance of blade tips and explore how curved micro-ribs induce cooling air flow and affect heat transfer performance, this study uses a numerical solution of three-dimensional Reynolds averaged Navier-Stokes (RANS) equation and standard k-ω turbulence models. The effects of streamwise micro-rib film cooling arrangements on heat transfer and cooling performance of cavity turbine blade tips are analyzed. Methods Based on the cavity blade tip of the first stage in GE-E3 high-pressure turbine, and following previous experience, a film cooling arrangement (case 1) is designed with large-diameter film holes at the leading and trailing edges, and two small-diameter film holes near the pressure side at the mid-chord region. Then, two additional small-diameter film holes are added near suction side at the mid-chord region where cooling air is scarce, and four mid-chord film holes are arranged at three positions to investigate the effect of hole position. For these three cooling arrangements, a curved micro-rib with 30% arc length is added to explore the effect of rib structure. Results Compared to case 1, placing the micro-rib at the leading edge of the cavity reduces blade tip leakage flow by 0.9% and total pressure loss at the outlet cross-section of flow passage by 0.5%. Positioning the micro-rib near the trailing edge results in an 8% reduction in blade tip heat transfer coefficient, and a 16% reduction when the micro-rib surface is excluded. Additionally, the streamwise micro-rib film cooling arrangement at this position achieves a film cooling effectiveness of 0.43 and optimal cooling uniformity. Conclusions The research findings can provide valuable references for the coupled design of high-performance blade tip structures in gas turbines; Reynolds averaged Navier-Stokes equation

Key words: gas turbine, streamwise micro-rib, cavity blade tip, heat transfer coefficient, film cooling effectiveness, cooling performance, Reynolds averaged Navier-Stokes (RANS) equation

中图分类号: