发电技术 ›› 2026, Vol. 47 ›› Issue (1): 133-144.DOI: 10.12096/j.2096-4528.pgt.260112

• 储能 • 上一篇    

基于电化学阻抗谱的锂离子电池健康状态估计

史宏思1, 孙新伟2,3, 王凯2   

  1. 1.青岛整流器制造有限公司,山东省 青岛市 266041
    2.青岛大学电气工程学院,山东省 青岛市 266071
    3.山东索想智能科技有限公司,山东省 潍坊市 261101
  • 收稿日期:2025-05-13 修回日期:2025-07-15 出版日期:2026-02-28 发布日期:2026-02-12
  • 通讯作者: 王凯
  • 作者简介:史宏思(1980),男,高级工程师,主要研究方向为电力电子变换技术、航天电源可靠性、无线传能技术等,shs313@126.com
    孙新伟(1998),男,硕士,研究方向为储能技术、新型储能元件、健康状态估计、剩余使用寿命预测,2743525018@qq.com
    王凯(1985),男,教授,博士,研究方向为储能技术、新型储能元件、健康状态估计、剩余使用寿命预测,本文通信作者,wkwj888@163.com
  • 基金资助:
    国家自然科学基金项目(52037005)

State of Health Estimation for Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy

Hongsi SHI1, Xinwei SUN2,3, Kai WANG2   

  1. 1.Qingdao Rectifier Manufacturing Co. , LTD. , Qingdao 266041, Shandong Province, China
    2.School of Electrical Engineering, Qingdao University, Qingdao 266071, Shandong Province, China
    3.Shandong Suoxiang Intelligent Technology Co. , Ltd. , Weifang 261101, Shandong Province, China
  • Received:2025-05-13 Revised:2025-07-15 Published:2026-02-28 Online:2026-02-12
  • Contact: Kai WANG
  • Supported by:
    National Natural Science Foundation of China(52037005)

摘要:

目的 锂离子电池作为电动汽车和储能系统的关键组件,其健康状态(state of health,SOH)的准确预测对于确保系统可靠性、延长电池寿命以及优化能源管理具有重要意义。然而,电池在实际运行时因受多因素影响而导致性能衰减。为此,提出一种基于电化学阻抗谱(electrochemical impedance spectroscopy,EIS)数据的高精度SOH预测方法。 方法 采用EIS数据进行实验,并利用线性Kramers-Kronig算法对EIS数据进行预处理。采用卷积神经网络(convolutional neural network,CNN)、双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络、注意力(Attention)组合模型作为预测模型,将EIS数据的阻抗实部、虚部和模值作为输入,利用CNN从中提取出重要特征,并结合BiLSTM网络模型来预测SOH。此外,通过加入Attention机制和Dropout算法来优化模型。 结果 通过不同温度下锂离子电池SOH预测及与CNN-BiLSTM、BiLSTM模型的对比表明,CNN-BiLSTM-Attention模型在25、35、45 ℃时SOH预测效果更优,精度较2个模型分别提升了46.1%和77.9%。 结论 基于EIS数据的SOH预测是可行的,CNN-BiLSTM-Attention组合模型能够实现锂离子电池SOH的精准、高效预测,具有较强的实用性。

关键词: 新能源, 电动汽车, 锂离子电池, 健康状态, 电化学阻抗谱, 卷积神经网络, 双向长短时记忆, 预测模型

Abstract:

Objectives Lithium-ion batteries, as key components in electric vehicles and energy storage systems, require accurate prediction of their state of health (SOH) to ensure system reliability, extend battery life, and optimize energy management. However, in actual operation, the performance of batteries deteriorates due to multiple factors. Therefore, a high-precision SOH prediction method based on electrochemical impedance spectroscopy (EIS) data is proposed. Methods Experiments are conducted using EIS data, and the linear Kramers-Kronig algorithm is employed to preprocess the EIS data. A convolutional neural network (CNN), bi-directional long short-term memory (BiLSTM) network, and an attention-based combination model are adopted as prediction models. The real part, imaginary part, and magnitude of the impedance from the EIS data are used as inputs. CNN is utilized to extract important features, which are then integrated with the BiLSTM network model to predict the SOH. Additionally, the Attention mechanism and Dropout algorithm are applied to optimize the model. Results The prediction of SOH of lithium-ion batteries at different temperatures and the comparison with the CNN-BiLSTM and BiLSTM models show that the CNN-BiLSTM-Attention model has better SOH prediction effects at 25, 35, and 45 ℃, with accuracy improvements of 46.1% and 77.9% respectively compared to the two models. Conclusions SOH prediction based on EIS data is feasible. The CNN-BiLSTM-Attention combination model is able to achieve accurate and efficient prediction of the SOH of lithium-ion batteries, demonstrating strong practicality.

Key words: new energy, electric vehicle, lithium-ion batteries, state of health, electrochemical impedance spectroscopy, convolutional neural network, bi-directional long short-term memory, prediction model

中图分类号: