发电技术 ›› 2024, Vol. 45 ›› Issue (2): 189-198.DOI: 10.12096/j.2096-4528.pgt.23079
• 灵活性发电技术 • 下一篇
王放放1, 杨鹏威2, 赵光金1, 李琦2, 刘晓娜2, 马双忱2
收稿日期:
2023-07-24
出版日期:
2024-04-30
发布日期:
2024-04-29
通讯作者:
马双忱
作者简介:
基金资助:
Fangfang WANG1, Pengwei YANG2, Guangjin ZHAO1, Qi LI2, Xiaona LIU2, Shuangchen MA2
Received:
2023-07-24
Published:
2024-04-30
Online:
2024-04-29
Contact:
Shuangchen MA
Supported by:
摘要:
“双碳”背景下,新能源开始大规模并网发电,但新能源发电的随机性与波动性对电网造成一定冲击,亟需构建新型电力系统。在这一过程中,作为电力系统的基石,传统火电将向提供可靠容量、调峰调频等辅助服务的基础保障性和系统调节性电源转型,火电机组的灵活性改造成为必然选择。分析了构建新型电力系统的阶段性目标及面临的困难与挑战,探讨了现阶段火电机组灵活性改造遇到的问题,结合火电运行数据,分析火电机组配置储能设备的技术途径。研究认为:构建新型电力系统过程中存在着电力系统不稳定、传统火电转型困难、能耗大、环保压力大等问题;火电机组本体的灵活性改造面临调峰能力不足、运行成本较高、负荷响应慢、运行能耗大及安全性不高等问题;通过火电加储能的运行模式会带来较好的经济效益和环境效益。
中图分类号:
王放放, 杨鹏威, 赵光金, 李琦, 刘晓娜, 马双忱. 新型电力系统下火电机组灵活性运行技术发展及挑战[J]. 发电技术, 2024, 45(2): 189-198.
Fangfang WANG, Pengwei YANG, Guangjin ZHAO, Qi LI, Xiaona LIU, Shuangchen MA. Development and Challenge of Flexible Operation Technology of Thermal Power Units Under New Power System[J]. Power Generation Technology, 2024, 45(2): 189-198.
灵活性参数 | 中国煤电 | 世界先进机组 | |
---|---|---|---|
已建机组 | 改造潜力 | ||
最小出力/% | 50 | 30 | 20 |
爬坡速率/(%/min) | 1~2 | 3~6 | 4~5 |
热态启动时间/h | 3~5 | 4 | 1.5~2.5 |
冷态启动时间/h | 10 | 5 | <10 |
表1 我国煤电机组与国际先进机组的差距
Tab. 1 Gap between China’s coal-fired power units and international advanced units
灵活性参数 | 中国煤电 | 世界先进机组 | |
---|---|---|---|
已建机组 | 改造潜力 | ||
最小出力/% | 50 | 30 | 20 |
爬坡速率/(%/min) | 1~2 | 3~6 | 4~5 |
热态启动时间/h | 3~5 | 4 | 1.5~2.5 |
冷态启动时间/h | 10 | 5 | <10 |
参数 | 负荷 | |||||
---|---|---|---|---|---|---|
30/% | 40/% | 50/% | 60/% | 75/% | 85/% | |
煤耗率/[g/(kW⋅h)] | 342 | 326 | 313 | 305 | 305 | 305 |
年运行时间/h | 200 | 300 | 800 | 1 000 | 1 500 | 2 000 |
燃煤单价/(元/t) | 1 350 | 1 350 | 1 350 | 1 350 | 1 350 | 1 350 |
表2 某电厂火电机组在不同负荷下的运行情况
Tab. 2 Operation of a power plant under different loads
参数 | 负荷 | |||||
---|---|---|---|---|---|---|
30/% | 40/% | 50/% | 60/% | 75/% | 85/% | |
煤耗率/[g/(kW⋅h)] | 342 | 326 | 313 | 305 | 305 | 305 |
年运行时间/h | 200 | 300 | 800 | 1 000 | 1 500 | 2 000 |
燃煤单价/(元/t) | 1 350 | 1 350 | 1 350 | 1 350 | 1 350 | 1 350 |
污染物 | 负荷 | |||||
---|---|---|---|---|---|---|
30% | 40% | 50% | 60% | 75% | 85% | |
CO2 | 53 920 | 102 494 | 328 024 | 479 460 | 898 988 | 1 358 470 |
SO2 | 175 | 333 | 1 064 | 1 556 | 2 917 | 4 407 |
NO x | 152 | 289 | 926 | 1 354 | 2 539 | 3 837 |
表3 某电厂火电机组在不同负荷下的污染物排放量
Tab. 3 Emissions of a power plant under different loads kg
污染物 | 负荷 | |||||
---|---|---|---|---|---|---|
30% | 40% | 50% | 60% | 75% | 85% | |
CO2 | 53 920 | 102 494 | 328 024 | 479 460 | 898 988 | 1 358 470 |
SO2 | 175 | 333 | 1 064 | 1 556 | 2 917 | 4 407 |
NO x | 152 | 289 | 926 | 1 354 | 2 539 | 3 837 |
储能技术 | 能量密度/(W⋅h/kg) | 响应时间 | 储能周期 | 使用寿命/a | 经济成本/(元/kW) | 安全与环境问题 |
---|---|---|---|---|---|---|
抽水蓄能 | 0.5~15.0 | 小时 | 数小时至数月 | 30~60 | 5 000~6 000 | 受地形、气候影响较大,水资源匮乏地区较难实现 |
电池储能 | 2.0~15.0 | 秒至小时 | 数分钟至数天 | 5~15 | 2 000~4 000 | 存在电池的化学成分对环境污染问题以及本身的安全问题 |
氨/氢化学储能 | 350.0/45.0 | 小时 | 数小时至数月 | —/5 | 20 000 | 无污染,但目前存在技术问题 |
热储能 | 80.0~200.0 | 小时 | 数分钟至数月 | 5~15 | 400~800 | 存在腐蚀等问题以及北方地区的热损问题 |
表4 不同储能技术性能对比
Tab. 4 Performance comparison of different energy storage technologies
储能技术 | 能量密度/(W⋅h/kg) | 响应时间 | 储能周期 | 使用寿命/a | 经济成本/(元/kW) | 安全与环境问题 |
---|---|---|---|---|---|---|
抽水蓄能 | 0.5~15.0 | 小时 | 数小时至数月 | 30~60 | 5 000~6 000 | 受地形、气候影响较大,水资源匮乏地区较难实现 |
电池储能 | 2.0~15.0 | 秒至小时 | 数分钟至数天 | 5~15 | 2 000~4 000 | 存在电池的化学成分对环境污染问题以及本身的安全问题 |
氨/氢化学储能 | 350.0/45.0 | 小时 | 数小时至数月 | —/5 | 20 000 | 无污染,但目前存在技术问题 |
热储能 | 80.0~200.0 | 小时 | 数分钟至数月 | 5~15 | 400~800 | 存在腐蚀等问题以及北方地区的热损问题 |
1 | IPCC .Climate change 2014 synthesis report[R].Geneva:IPCC,2015. |
2 | 王志轩,潘荔,张建宇 .碳排放权交易培训教材[M].北京:中国环境出版集团,2022:125-126. |
WANG Z X, PAN L, ZHANG J Y .Training materials for carbon emission trading[M].Beijing:China Environmental Publishing Group,2022:125-126. | |
3 | WANG F, HARINDINTWALI J D, YUAN Z,et al .Technologies and perspectives for achieving carbon neutrality[J].Innovation (Camb),2021,2(4):100180. doi:10.1016/j.xinn.2021.100180 |
4 | LUO S H, HU W H, LIU W,et al .Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,166:112618. doi:10.1016/j.rser.2022.112618 |
5 | CHEN L, MSIGWA G, YANG M,et al .Strategies to achieve a carbon neutral society:a review[J].Environmental Chemistry Letters,2022,20(4):2277-2310. doi:10.1007/s10311-022-01435-8 |
6 | 陈美安,杨鹏,胡敏 .中国NDC进程及展望2021:迈向全球碳中性的未来[R].北京:绿色创新发展中心,2021. |
CHEN M A, YANG P, HU M .The process and prospect of NDC in China 2021:Towards a global carbon-neutral future[R].Beijing:Green Innovation Development Center,2021. | |
7 | 杨京渝,罗隆福,阳同光,等 .计及谷时段风电消纳的储能系统平抑风电功率波动控制策略[J].电力系统保护与控制,2023,51(10):131-141. |
YANG J Y, LUO L F, YANG T G,et al .Smoothing wind power fluctuation control strategy for an energy storage system considering wind power consumption in the valley period[J].Power System Protection and Control,2023,51(10):131-141. | |
8 | 吴应双,冯祥勇,王寅,等 .一种考虑新能源电站出力不确定性的采样鲁棒无功优化方法[J].电力科学与技术学报,2023,38(2):84-95. |
WU Y S, FENG X Y, WANG Y,et al .A sample robust reactive power optimization approach considering the power output uncertainty of renewable energy stations[J].Journal of Electric Power Science and Technology,2023,38(2):84-95. | |
9 | 杨京渝,彭丽,罗隆福,等 .计及风电消纳的风储系统跟踪计划出力控制策略[J].电力建设,2023,44(9):160-170. |
YANG J Y, PENG L, LUO L F,et al .Wind storage system tracking plan output control strategy considering wind power consumption[J].Electric Power Construction,2023,44(9):160-170. | |
10 | 兰贞波,冯万兴,胡军峰,等 .基于可变误差多面体算法的储能融合电锅炉提升风电消纳控制技术[J].电力自动化设备,2020,40(5):47-53. doi:10.16081/j.epae.202004022 |
LAN Z B, FENG W X, HU J F,et al .Usage of combined energy storage electric boiler to enhance wind power accommodation based on flexible tolerance polyhedron method[J].Electric Power Automation Equipment,2020,40(5):47-53. doi:10.16081/j.epae.202004022 | |
11 | 荆朝霞 .新型电力系统下电力市场的建设及运行机制研究[J].电力工程技术,2022,41(1):1. |
JING Z X .Research on the construction and operation mechanism of power market under the new power system[J].Electric Power Engineering Technology,2022,41(1):1. | |
12 | 郭庆来,兰健,周艳真,等 .基于混合智能的新型电力系统运行方式分析决策架构及其关键技术[J].中国电力,2023,56(9):1-13. |
GUO Q L, LAN J, ZHOU Y Z,et al .A New power system operation mode analysis and decision architecture based on hybrid intelligence and its key technologies[J].Electric Power,2023,56(9):1-13. | |
13 | 苏步芸,王诗超 .新型电力系统背景下新能源送出合理消纳率研究[J].南方能源建设,2023,10(6):43-50. |
SU B Y, WANG S C .Research on reasonable consumption rate of new energy transmission under the new power system[J].Southern Energy Construction,2023,10(6):43-50. | |
14 | 李树明,刘青松,朱小东,等 .350 MW超临界热电联产机组灵活性改造分析[J].发电技术,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 |
LI S M, LIU Q S, ZHU X D,et al .Flexibility transformation analysis of 350 MW supercritical cogeneration unit[J].Power Generation Technology,2018,39(5):449-454. doi:10.12096/j.2096-4528.pgt.2018.069 | |
15 | 孙韶华,王璐,白涌泉,等 .拉闸限电的背后:煤炭价格高企火电企业发电意愿低迷[N].企业家日报,2021-09-29(3). |
SUN S H, WANG L, BAI Y Q,et al .Behind the power limit by pulling the gate:the willingness of thermal power enterprises to generate electricity is low because of high coal prices[N].Entrepreneur Daily,2021-09-29(3). | |
16 | 韩迪,马越,陆彬,等 .全球退煤进展追踪报告[R].北京:绿色创新发展中心,2021. |
HAN D, MA Y, LU B,et al .Follow-up report on global coal withdrawal progress[R].Beijing:Green Innovation Development Center,2021. | |
17 | 韩迪,汪燕辉 .2022年全球退煤进展追踪报告[R].北京:绿色创新发展中心,2022. |
HAN D, WANG Y H .Follow-up report on global coal withdrawal progress in 2022[R].Beijing:Green Innovation Development Center,2022. | |
18 | CUI R N, HULTMAN N, JIANG K J,et al .A high ambition coal phaseout in China:feasible strategies through a comprehensive plant-by-plant assessment[R].Maryland:Center for Global Sustainability:College Park,2020. |
19 | International Energy Agency .Phasing out unabated coal current status and three case studies[R].London:IEA,2021. doi:10.1787/d6c4a08d-en |
20 | International Energy Agency .The role of China’s ETS in power sector decarbonisation[R].London:IEA,2021. doi:10.1787/799d0baa-en |
21 | LUO S H, HU W H, LIU W,et al .Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,166:112618. doi:10.1016/j.rser.2022.112618 |
22 | WANG G, DENG J, ZHANG Y,et al .Air pollutant emissions from coal-fired power plants in China over the past two decades[J].The Science of the Total Environment,2020,741:140326. doi:10.1016/j.scitotenv.2020.140326 |
23 | WANG W, LI Z,LYU J,et al .An overview of the development history and technical progress of China’s coal-fired power industry[J].Frontiers in Energy,2019,13(3):417-426. doi:10.1007/s11708-019-0614-2 |
24 | ZHOU S, CHEN B, WEI W,et al .China’s power transformation may drastically change employment patterns in the power sector and its upstream supply chains[J].Environmental Research Letters,2022,17:1-11. doi:10.1088/1748-9326/ac5769 |
25 | Climate Action Tracker .China going carbon neutral before 2060 would lower warming projections by around 0.2 to 0.3 degrees[EB/OL].(2020-09-23)[2023-06-05]. |
ound-2-to-3-tenths-of-a-degree . | |
26 | CHEN L, MSIGWA G, YANG M,et al .Strategies to achieve a carbon neutral society:a review[J].Environmental Chemistry Letters,2022,20(4):2277-2310. doi:10.1007/s10311-022-01435-8 |
27 | 袁家海,张健,孟之绪,等 .电力系统灵活性提升:技术路径、经济性与政策建议[R].北京:自然资源保护协会,2022. |
YUAN J H, ZHANG J, MENG Z X,et al .Improving the flexibility of power system:technical path,economy and policy suggestions[R].Beijing:Natural Resources Conservation Association,2022. | |
28 | 鲁宗相,李海波,乔颖 .含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158. doi:10.7500/AEPS20151215008 |
LU Z X, LI H B, QIAO Y .Power system flexibility planning and challenges considering high proportion of renewable energy[J].Automation of Electric Power Systems,2016,40(13):147-158. doi:10.7500/AEPS20151215008 | |
29 | International Energy Agency (IEA) .Harnessing variable renewables:a guide to the balancing challenge[M].Paris:OECD Publishing,2011:153-158. doi:10.1787/9789264111394-en |
30 | 胡嘉骅 .电力系统灵活性提升方法及灵活调节产品获取机制[D].杭州:浙江大学,2018. |
HU J H .Power system flexibility improvement method and flexible adjustment product acquisition mechanism[D].Hangzhou:Zhejiang University,2018. | |
31 | LI J, HO M S, XIE C,et al .China’s flexibility challenge in achieving carbon neutrality by 2060[J].Renewable and Sustainable Energy Reviews,2022,158:112112. doi:10.1016/j.rser.2022.112112 |
32 | 甘益明,王昱乾,黄畅,等 .“双碳”目标下供热机组深度调峰与深度节能技术发展路径[J].热力发电,2022,51(8):1-10. |
GAN Y M, WANG Y Q, HUANG C,et al .Development path of deep peak-shaving and deep energy conservation technology for cogeneration units with “dual carbon” target[J].Thermal Power Generation,2022,51(8):1-10. | |
33 | KOYTSOUMPA E I, BERGINS C, KAKARAS E .Flexible operation of thermal plants with integrated energy storage technologies[J].Heat and Mass Transfer,2018,54(8):2453-2460. doi:10.1007/s00231-017-2148-7 |
34 | COLIN H .Increasing the flexibility of coal-fired power plants[R].London:IEA Clean Coal Centre,2014. |
35 | 欧阳子区,王宏帅,吕清刚,等 .煤粉锅炉发电机组深度调峰技术进展[J].中国电机工程学报,2023,43(22):8772-8790. |
OUYANG Z Q, WANG H S, LÜ Q G,et al .Progress in deep peak regulation technology of pulverized coal fired boiler generator set[J].Proceedings of CSEE,2023,43(22):8772-8790. | |
36 | 马良玉,宁福军,宋胜男 .凝结水节流对机组负荷影响的仿真研究[J].热力发电,2015,44(3):109-114. doi:10.3969/j.issn.1002-3364.2015.03.109 |
MA L Y, NING F J, SONG S N .Influence of condensate throttling on unit load:simulation test[J].Thermal Power Generation,2015,44(3):109-114. doi:10.3969/j.issn.1002-3364.2015.03.109 | |
37 | 刘吉臻,王耀函,曾德良,等 .基于凝结水节流的火电机组AGC控制优化方法[J].中国电机工程学报,2017,37(23):6918-6925. |
LIU J Z, WANG Y H, ZENG D L,et al .An AGC control method of thermal unit based on condensate throttling[J].Proceedings of the CSEE,2017,37(23):6918-6925. | |
38 | 汤可怡,杨建明,蔡喜冬 .大型机组一次调频性能优化方法[J].发电设备,2016,30(6):374-377. doi:10.3969/j.issn.1671-086X.2016.06.003 |
TANG K Y, YANG J M, CAI X D .Optimization on primary frequency regulation of large power units[J].Power Equipment,2016,30(6):374-377. doi:10.3969/j.issn.1671-086X.2016.06.003 | |
39 | 章良利,李敏,周晓蒙,等 .深度调峰下燃煤机组运行方式对能耗的影响[J].中国电力,2017,50(7):85-89. doi:10.11930/j.issn.1004-9649.2017.07.085.05 |
ZHANG L L, LI M, ZHOU X M,et al .Impact of the running modes of coal-fired units on energy consumption in in-depth peak load cycling[J]. Electric Power,2017,50(7):85-89. doi:10.11930/j.issn.1004-9649.2017.07.085.05 | |
40 | 徐俊 .新能源消纳下的火电机组调峰策略及效益评估[D].南京:南京邮电大学,2021. |
XU J .Peak regulation strategy and benefit evaluation of thermal power units under new energy consumption[D].Nanjing:Nanjing University of Posts and Telecommunications,2021. | |
41 | 陆昊 .新型电力系统中储能配置优化及综合价值测度研究[D].北京:华北电力大学,2021. |
LU H .Research on optimization of energy storage configuration and comprehensive value measurement in new power system[D].Beijing:North China Electric Power University,2021. | |
42 | KOYTSOUMPA E I, BERGINS C, KAKARAS E .Flexible operation of thermal plants with integrated energy storage technologies[J].Heat and Mass Transfer,2018,54(8):2453-2460. doi:10.1007/s00231-017-2148-7 |
43 | MIMICA M, SINOVI Z, JOKI A,et al .The role of the energy storage and the demand response in the robust reserve and network-constrained joint electricity and reserve market[J].Electric Power Systems Research,2022,204:107716. doi:10.1016/j.epsr.2021.107716 |
44 | SAMAKOOSH H M, JAFARI NOKANDI M, SHEIKHOLESLAMI A .Coordinated resource scheduling in a large scale virtual power plant considering demand response and energy storages[J].Journal of Operation and Automation in Power Engineering,2018,6(1):50-60. |
45 | BABU B C, FRIVALDSKY M, PIEGARI L,et al .Design,control, and application of energy storage in modern power systems[J].Electrical Engineering,2022,104(1):1-12. doi:10.1007/s00202-021-01431-1 |
46 | 徐彤,周云,王新雷 .300 MW级热电联产机组调峰能力研究[J].中国电力,2014,47(9):35-41. |
XU T, ZHOU Y, WANG X L .Research on peak regulation capability of 300 MW combined heat and power plant[J].Electric Power,2014,47(9):35-41. | |
47 | 毕庆生,田春光,吕项羽,等 .大型供热机组深度参与电网调峰的一种新模式[J].汽轮机技术,2014,56(1):69-71. doi:10.3969/j.issn.1001-5884.2014.01.020 |
BI Q S, TIAN C G, LÜ X Y,et al .A new model of large heating units deeply involved in the peak regulation of power network[J].Turbine Technology,2014,56(1):69-71. doi:10.3969/j.issn.1001-5884.2014.01.020 | |
48 | 郭丰慧,胡林献,周升彧 .基于二级热网储热式电锅炉调峰的弃风消纳调度模型[J].电力系统自动化,2018,42(19):50-56. doi:10.7500/AEPS20180130009 |
GUO F H, HU L X, ZHOU S Y .Dispatching model of wind power accommodation based on heat storage electric boiler for peak-load regulation in secondary heat supply network[J]. Automation of Electric Power Systems,2018,42(19):50-56. doi:10.7500/AEPS20180130009 | |
49 | 秦婷,刘怀东,王锦桥,等 .基于碳交易的电-热-气综合能源系统低碳经济调度[J].电力系统自动化,2018,42(14):8-13. doi:10.7500/AEPS20171220005 |
QIN T, LIU H D, WANG J Q,et al .Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J].Automation of Electric Power Systems,2018,42(14):8-13. doi:10.7500/AEPS20171220005 | |
50 | 马双忱,杨鹏威,王放放,等 .“双碳”目标下传统火电面临的挑战与对策[J].华电技术,2021,43(12):36-45. |
MA S C, YANG P W, WANG F F,et al .Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J].Huadian Technology,2021,43(12):36-45. | |
51 | 刘思远 .配电网储能设备并联运行控制方法与控制特性[D].北京:华北电力大学,2021. |
LIU S Y. Parallel operation control method and control characteristics of energy storage equipment in distribution network[D].Beijing:North China Electric Power University,2021. | |
52 | 王亚莉,叶泽,戴双凤,等 .基于ESG理念的新型电池储能综合价值测算及经济性评估[J].财经理论与实践,2022,43(5):108-115. |
WANG Y L, YE Z, DAI S F,et al .Integrated value measurement and economic evaluation of new battery energy storage based on ESG concept[J].The Theory and Practice of Finance and Economics,2022,43(5):108-115. |
[1] | 刘旺, 陈连, 龚高阳, 李智华, 薛文华, 石金刚, 谢军, 李雷雷, 姚荣财, 王召鹏, 杨延西, 邓毅, 张晨辉. 基于数字孪生的空气预热器预测性维护模式研究[J]. 发电技术, 2024, 45(4): 622-632. |
[2] | 肖白, 赵雪纯, 董光德. 电能质量综合评估方法综述与展望[J]. 发电技术, 2024, 45(4): 716-733. |
[3] | 陈晓峰, 左川, 赵宁, 黄凯, 王惠杰. 集成蓄热装置的火电机组调峰特性分析[J]. 发电技术, 2024, 45(3): 392-400. |
[4] | 张思海, 李超然, 万广亮, 刘印学, 徐海楠, 黄中, 杨海瑞. 330 MW 循环流化床锅炉深度调峰技术[J]. 发电技术, 2024, 45(2): 199-206. |
[5] | 郑淇薇, 王华霆, 陈衡, 潘佩媛, 徐钢. 深度调峰背景下火电机组热电解耦技术路径对比分析[J]. 发电技术, 2024, 45(2): 207-215. |
[6] | 贾志军, 范伟, 任少君, 魏唐斌. 600 MW亚临界机组长时间深度调峰燃烧稳定性研究[J]. 发电技术, 2024, 45(2): 216-225. |
[7] | 李展, 杨振勇, 刘磊, 陈振山, 季卫鸣, 洪烽. 火电机组深度调峰工况下炉侧蓄热系数对一次调频能力的影响分析[J]. 发电技术, 2024, 45(2): 226-232. |
[8] | 杨正, 孙亦鹏, 温志强, 程亮, 李战国. 深度调峰工况下超临界机组的干湿态转换策略研究[J]. 发电技术, 2024, 45(2): 233-239. |
[9] | 刘林, 王大龙, 綦晓, 周振波, 林焕新, 蔡传卫. 基于双锁相环的海上风场综合惯量调频策略研究[J]. 发电技术, 2024, 45(2): 282-290. |
[10] | 杨捷, 孙哲, 苏辛一, 鲁刚, 元博. 考虑振荡型功率的直流微电网储能系统无互联通信网络的多目标功率分配方法[J]. 发电技术, 2024, 45(2): 341-352. |
[11] | 王进钊, 严干贵, 刘侃. 基于交替方向隐式平衡截断法的直驱风电场次同步振荡分析的模型降阶研究[J]. 发电技术, 2023, 44(6): 850-858. |
[12] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[13] | 安吉振, 郑福豪, 刘一帆, 陈衡, 徐钢. 基于大数据分析的火电机组引风机故障预警研究[J]. 发电技术, 2023, 44(4): 557-564. |
[14] | 杜将武, 唐小强, 罗志伟, 刘敦楠, 陈积旭, 徐尔丰, 毕圣. 面向综合能源园区的丰枯电价定价方法[J]. 发电技术, 2023, 44(2): 261-269. |
[15] | 董宸, 吴强, 黄河, 章锐, 杨秀媛. 基于免疫算法的电网拓扑结构识别[J]. 发电技术, 2023, 44(1): 125-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||