发电技术 ›› 2022, Vol. 43 ›› Issue (5): 775-783.DOI: 10.12096/j.2096-4528.pgt.22131
郑俊生1,2, 吕心荣1,2, 郑剑平2,3
收稿日期:
2022-07-28
出版日期:
2022-10-31
发布日期:
2022-11-04
作者简介:
基金资助:
Junsheng ZHENG1,2, Xinrong LÜ1,2, Jim P. ZHENG2,3
Received:
2022-07-28
Published:
2022-10-31
Online:
2022-11-04
Supported by:
摘要:
锂离子电容器作为一种新型的储能器件,不仅具有较高能量密度,还具有较为优异的功率密度和超长的循环寿命,在高功率和长寿命的应用场景具有极大的应用潜力。首先,从理论上分析了双电层电容器能量密度受限原理以及锂离子电容器性能提升的因素;其次,对比讨论了锂离子电容器和双电层电容器的性能差异;最后,对锂离子电容器在智能仪表、汽车节能减排、新能源汽车、可再生能源发电与功率储能的应用潜力进行了分析。研究结果为锂离子电容器能量密度的进一步提升提供了理论基础,为锂离子电容器的应用指明了方向。
中图分类号:
郑俊生, 吕心荣, 郑剑平. 锂离子电容器性能分析及其应用[J]. 发电技术, 2022, 43(5): 775-783.
Junsheng ZHENG, Xinrong LÜ, Jim P. ZHENG. Performance Analysis and Application of Lithium Ion Capacitors[J]. Power Generation Technology, 2022, 43(5): 775-783.
1 | 田廓,董文杰 .构建新型电力系统背景下输电网架加强投资决策模型[J].智慧电力,2021,49(8):1-7. doi:10.3969/j.issn.1673-7598.2021.08.002 |
TIAN K, DONG W J .Investment decision-making model of transmission grids under new style power system[J].Smart Power,2021,49(8):1-7. doi:10.3969/j.issn.1673-7598.2021.08.002 | |
2 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
3 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. doi:10.1109/mc.2017.52 |
WEN J Y,Z B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,50(7):1-10. doi:10.1109/mc.2017.52 | |
4 | 郑华,赵志强,刘斯伟,等 .适应新型电力系统快速频率支撑需求的混合型储能系统动态建模及其控制策略分析[J].电力建设,2022,43(8):13-21. doi:10.12204/j.issn.1000-7229.2022.08.002 |
ZHENG H, ZHAO Z Q, LIU S W,et al .Modelling and control of hybrid energy storage system with fast frequency response in new power system[J].Electric Power Construction,2022,43(8):13-21. doi:10.12204/j.issn.1000-7229.2022.08.002 | |
5 | 毛颖群,张建平,程浩忠,等 .考虑频率安全约束及风电综合惯性控制的电力系统机组组合[J].电力系统保护与控制,2022,50(11):61-70. |
MAO Y Q, ZHANG J P, CHENG H Z,et al .Unit commitment of a power system considering frequency safety constraint and wind power integrated inertial control[J].Power System Protection and Control,2022,50(11):61-70. | |
6 | 王辉,梁登香,韩晓娟 .储能参与泛在电力物联网辅助服务应用综述[J].发电技术,2021,42(2):171-179. doi:10.12096/j.2096-4528.pgt.19184 |
WANG H, LIANG D X, HAN X J .Reviews of energy storage participating in auxiliary services under ubiquitous internet of things[J].Power Generation Technology,2021,42(2):171-179. doi:10.12096/j.2096-4528.pgt.19184 | |
7 | 王上行,贾学翠,王立华,等 .混合储能系统的功率变换器电流预测控制方法[J].电力建设,2020,41(1):71-79. |
WANG S X, JIA X C, WANG L H,et al .Current predictive control of power converter for hybrid energy storage system[J].Electric Power Construction,2020,41(1):71-79. | |
8 | KUMAR P S, PRAKASH P, SRINIVASAN A,et al .A new highly powered supercapacitor electrode of advantageously united ferrous tungstate and functionalized multiwalled carbon nanotubes[J].Journal of Power Sources,2021,482:228892. doi:10.1016/j.jpowsour.2020.228892 |
9 | BABU B, TALLURI B, GURUGUBELLI T R,et al .Effect of annealing environment on the photoelectrochemical water oxidation and electrochemical supercapacitor performance of SnO2 quantum dots[J].Chemosphere,2022,286(1):131577. doi:10.1016/j.chemosphere.2021.131577 |
10 | LI C, ZHANG X, LV Z S,et al .Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors[J].Chemical Engineering Journal,2021,414:128781. doi:10.1016/j.cej.2021.128781 |
11 | KIM H, PARK K Y, CHO M Y,et al .High-performance hybrid supercapacitor based on grapheme-wrapped Li4Ti5O12 and activated carbon[J].Chemelectrochem,2014,1(1):125-130. doi:10.1002/celc.201300186 |
12 | NAOI K, ISHIMOTO S, MIYAMOTO J L .Second generation nanohybrid supercapacitor evolution of capacitive energy storage devices[J].Energy & Environmental Science,2012,5(11):9363-9373. doi:10.1039/c2ee21675b |
13 | JIN Y F, TAN S T, ZHU Z J,et al .Hierarchical MoS2/C@MXene composite as an anode for high-performance lithium-ion capacitors[J].Applied Surface Science,2022,598:153778. doi:10.1016/j.apsusc.2022.153778 |
14 | CERICOLA D, KOTZ R .Hybridization of rechargeable batteries and electrochemical capacitors:principles and limits[J].Electrochimica Acta,2012,72:1-17. doi:10.1016/j.electacta.2012.03.151 |
15 | WANG Y, SONG Y, XIA Y .Electrochemical capacitors:mechanism,materials,systems,characterization and applications[J].Chemical Society Reviews,2016,45(21):5925-5950. doi:10.1039/c5cs00580a |
16 | ASKARI M B, SALARIZADEH P, SEIFI M,et al .ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes[J].Journal of Alloys and Compounds,2021,860:158497. doi:10.1016/j.jallcom.2020.158497 |
17 | ZHENG J P, HUANG J, JOW T R .The limitations of energy density for electrochemical capacitors[J].Journal of the Electrochemical Society,1997,144(6):2026-2031. doi:10.1149/1.1837738 |
18 | WANG X, DENG J X, DUAN X J,et al .Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors[J].Journal of Materials Chemistry A,2014,2(31):12323. doi:10.1039/c4ta02231a |
19 | REN L J, ZHANG G N, LEI J,et al .Growth of PANI thin layer on MoS2 nanosheet with high electrocapacitive property for symmetric supercapacitor[J].Journal of Alloys and Compounds,2019,798:227-234. doi:10.1016/j.jallcom.2019.05.240 |
20 | ZHU C Y, ZHANG W J, LI G,et al .Ultra-simple and green two-step synthesis of sodium anthraquinone-2-sulfonate composite graphene (AQS/rGO) hydrogels for supercapacitor electrode materials[J].Journal of Alloys and Compounds,2021,862:158472. doi:10.1016/j.jallcom.2020.158472 |
21 | YANG Y, WANG C Y, ZHANG C M,et al .A novel codoping approach for enhancing the performance of polypyrrole cathode in a bioelectric battery[J].Carbon,2014,80:691-697. doi:10.1016/j.carbon.2014.09.013 |
22 | SHA C H, LU B, MAO H Y,et al .3D ternary nanocomposites of molybdenum disulfide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors[J].Carbon,2016,99:26-34. doi:10.1016/j.carbon.2015.11.066 |
23 | ZHANG K, MAO L, ZHANG L L,et al .Surfactant-intercalated,chemically reduced graphene oxide for high performance supercapacitor electrodes[J].Journal of Materials Chemistry,2011,21(20):7302. doi:10.1039/c1jm00007a |
24 | ZHENG J P .High energy density electrochemical capacitors without consumption of electrolyte[J].Journal of the Electrochemical Society,2009,156(7):A500-A505. doi:10.1149/1.3121564 |
25 | LI B, ZHENG J, ZHANG H Y,et al .Electrode materials,electrolytes,and challenges in nonaqueous lithium-ion capacitors[J].Advanced Materials,2018,30(17):1-19. doi:10.1002/adma.201705670 |
26 | ZHENG J P, JOW T R .The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors[J].Journal of the Electrochemical Society,1997,144(7):2417-2420. doi:10.1149/1.1837829 |
27 | ZHENG J S, QIN N, JIN L,et al .Constructing an unbalanced structure toward high working voltage for improving energy density of non-aqueous carbon-based electrochemical capacitors[J].Chinese Chemical Letters,2020,31(3):903-908. doi:10.1016/j.cclet.2019.09.048 |
28 | SCHROEDER M, WINTER M, PASSERINI S,et al .On the use of soft carbon and propylene carbonate-based electrolytes in lithium-ion capacitors[J].Journal of the Electrochenical Society,2012,159(8),A1240-A1245. doi:10.1149/2.050208jes |
29 | SHEN Y, ELTZHOLTZ J R, IVERSEN B B .Cntrolling size,crystallinity and electrochemical performance of Li4Ti5O12 nanocrystals[J].Chemistry of Materials,2013,25(24):5023-5030. doi:10.1021/cm402366y |
30 | LI H, SHEN L, WANG J,et al .Design of a nitrogen-doped,carbon-coated Li4Ti5O12 nanocomposite with a core-shell structure and its application for high-rate lithium-ion batteries[J].ChemPlusChen,2014,79(1):128-133. doi:10.1002/cplu.201300316 |
31 | NAOI K, NAOI W, AOYAGI S,et al .New generation “nanohybrid supercapacitor”[J].Accounts of Chemical Research,2012,46(5):1075-1083. doi:10.1021/ar200308h |
32 | JIN L, GUO X, GONG R,et al .Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J].Energy Storage Materials,2019,23:409-417. doi:10.1016/j.ensm.2019.04.027 |
33 | JIN L, GUO X, SHEN C,et al .A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J].Journal of Power Sources,2019,441:227211. doi:10.1016/j.jpowsour.2019.227211 |
34 | SHELLIKERI A, YTURRIAGA S, ZHENG J S,et al .Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode-long term cycle life study, rate effect and charge sharing analysis[J].Journal of Power Sources,2018,392:285-295. doi:10.1016/j.jpowsour.2018.05.002 |
35 | JIN L, ZHENG J, WU Q,et al .Exploiting a hybrid lithium ion power source with a high energy density over 30 W∙h/kg[J].Materials Today Energy,2018,7:51-57. doi:10.1016/j.mtener.2017.12.003 |
36 | CAO W, ZHENG J, ADAMS D,et al .Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes[J].Journal of the Electrochemical Society,2014,161(14):A2087. doi:10.1149/2.0431414jes |
37 | JIN L M, NI J, SHEN C,et al .Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries[J].Journal Power Sources,2020,448:227336. doi:10.1016/j.jpowsour.2019.227336 |
38 | YUAN J, QIN N, LU Y,et al .The effect of electrolyte additives on the rate performance of hard carbon anode at low temperature for lithium-ion capacitor[J].Chinese Chemical Letters,33(8):3889-3893. doi:10.1016/j.cclet.2021.11.062 |
39 | SOLTANI M, BEHESHTI S H .A comprehensive review of lithium ion capacitor:development,modelling, thermal management and applications[J].Journal of Energy Storage,2021,34:102019. doi:10.1016/j.est.2020.102019 |
[1] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[2] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[3] | 李军徽, 陈国航, 马腾, 李翠萍, 朱星旭, 贾晨. 高风电渗透率下液流电池储能系统调峰优化控制策略[J]. 发电技术, 2024, 45(3): 434-447. |
[4] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[5] | 刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272. |
[6] | 刘洪波, 刘珅诚, 盖雪扬, 刘永发, 阎禹同. 高比例新能源接入的主动配电网规划综述[J]. 发电技术, 2024, 45(1): 151-161. |
[7] | 陈志华, 尤梦凯, 蔡伟, 胡经伟, 胡兴, 张爱芳, 张科杰, 王伟. 考虑全寿命周期的储能电站综合评价模型[J]. 发电技术, 2023, 44(6): 883-888. |
[8] | 陈皓勇, 黄宇翔, 张扬, 王斐, 周亮, 汤君博, 吴晓彬. 基于“三流分离-汇聚”的虚拟电厂架构设计[J]. 发电技术, 2023, 44(5): 616-624. |
[9] | 郁海彬, 张煜晨, 刘扬洋, 陆增洁, 翁锦德. 碳交易机制下多主体虚拟电厂参与电力市场的优化调度竞标策略[J]. 发电技术, 2023, 44(5): 634-644. |
[10] | 石梦舒, 许小峰, 张继广, 李忆, 周保中, 乐鹰, 毕圣. 考虑电-氢市场的虚拟电厂两阶段优化策略研究[J]. 发电技术, 2023, 44(5): 645-655. |
[11] | 李建林, 邵晨曦, 张则栋, 梁忠豪, 曾飞. 氢能产业政策及商业化模式分析[J]. 发电技术, 2023, 44(3): 287-295. |
[12] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[13] | 郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212. |
[14] | 叶珍珍, 陈鑫祺, 张抒婷, 汪剑, 崔超婕, 张刚, 张磊, 钱陆明, 金鹰, 骞伟中. 离子液体型双电层电容器在45 ℃和3 V状态下的长周期运行研究[J]. 发电技术, 2023, 44(2): 213-220. |
[15] | 杨锡勇, 张仰飞, 林纲, 张玉卓, 安允展, 杨昊天. 考虑需求响应的源-荷-储多时间尺度协同优化调度策略[J]. 发电技术, 2023, 44(2): 253-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||