发电技术 ›› 2022, Vol. 43 ›› Issue (5): 748-759.DOI: 10.12096/j.2096-4528.pgt.22115
魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中
收稿日期:
2022-07-01
出版日期:
2022-10-31
发布日期:
2022-11-04
作者简介:
基金资助:
Shaoxin WEI, Ying JIN, Jin WANG, Zhoufei YANG, Chaojie CUI, Weizhong QIAN
Received:
2022-07-01
Published:
2022-10-31
Online:
2022-11-04
Supported by:
摘要:
发展可再生能源是实现“碳达峰、碳中和”目标的最重要保障之一。然而,太阳能、风能等新能源出力的不稳定性对储能器件的能量特性和功率特性都提出了更高要求。首先,对传统锂离子电池和超级电容器的技术特征进行论述,提出在新的电网储能要求下发展电池型电容器技术的必要性。然后,从正极材料的改进、负极材料的改进,以及极片结构、集流体与极耳的革新3个方面,详细讨论了电池型电容器关键材料的技术发展方向。最后,提出储能器件的三大核心要素及其“二合一”或“三合一”效应的搭配,以满足对成本、安全性、功率特性和能量特性的多样化需求,并对电池型电容器的发展趋势进行了展望。
中图分类号:
魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759.
Shaoxin WEI, Ying JIN, Jin WANG, Zhoufei YANG, Chaojie CUI, Weizhong QIAN. Prospect for Development Trend of Battery-Capacitor Technology[J]. Power Generation Technology, 2022, 43(5): 748-759.
图4 “核壳结构”超细纳米磷酸铁锂/石墨碳复合物在1 C倍率下的充放电曲线
Fig. 4 Charge and discharge curves of ultrafine nano-LiFePO4/graphitic carbon composite with core-shell structure at 1 C rate
图7 随机型、单梯度型(孔隙率)和双梯度型(颗粒尺寸与孔隙率)电极的理论模拟结果
Fig. 7 Theoretical simulation results of random, single-gradient (porosity) and dual-gradient (particle size and porosity) electrodes
活性物组成(正极//负极) | 比容量/(mA⋅h/g) | 能量密度/(W⋅h/kg) | 功率密度/(kW/kg) | 循环寿命 | 参考文献 |
---|---|---|---|---|---|
75%LFP+5%AC//Li | 142~70P | — | — | 400圈后保持100% | [ |
25%NCM+75%AC//HCL | 55~27P | 75.6~28.5T | 0.041 7~6.9T | 20 000圈后保持98% | [ |
30%LMO+45%AC//LTO | — | 16.47T | 4 C | 5 000圈后保持92% | [ |
65%LFP+20%AC//Li | 110~20P | — | — | 500圈后保持98% | [ |
75%NCM+25%AC//Graphite | 83.5~35.2P | 294~50P | 0.1~23P | 1 000圈后保持95% | [ |
67%NCM+33%AC//SCL | 92.9~60.9P | 173.3~92.4T | 0.2 C~7.73T | 10 000圈后保持80% | [ |
30%LFP+70%AC//MCMB | 25.2~18.4T | 69.02T | 4 C | 100圈后保持100% | [ |
80%LFP+20%AC//LTO | 96.8~57.2P | — | — | 500圈后保持93% | [ |
20%LFP+80%AC//HCL | 58.4~30P | 30~5.7F | 0.005~2F | 30 000圈后保持90% | [ |
40%NCM+60%AC//HCL | — | 30~3.0F | 0.01~5F | 40 000圈后保持92% | [ |
30%LFP+70%AC//HCL | 75~30P | 90~30T | 0.03~3T | 62 000圈后保持80% | [ |
80%LMO+5%AC//80%LTO+5%AC | 56.4~40.7T | 60~30F | 0.005~2.5F | 2 000圈后保持77.5% | [ |
77%NCM+3%CA//Li | 163.8~126.8P | — | — | 300圈后保持72.79% | [ |
表1 目前已报道的电池型电容器性能对比
Tab. 1 Performance comparison of ever-reported battery-capacitors
活性物组成(正极//负极) | 比容量/(mA⋅h/g) | 能量密度/(W⋅h/kg) | 功率密度/(kW/kg) | 循环寿命 | 参考文献 |
---|---|---|---|---|---|
75%LFP+5%AC//Li | 142~70P | — | — | 400圈后保持100% | [ |
25%NCM+75%AC//HCL | 55~27P | 75.6~28.5T | 0.041 7~6.9T | 20 000圈后保持98% | [ |
30%LMO+45%AC//LTO | — | 16.47T | 4 C | 5 000圈后保持92% | [ |
65%LFP+20%AC//Li | 110~20P | — | — | 500圈后保持98% | [ |
75%NCM+25%AC//Graphite | 83.5~35.2P | 294~50P | 0.1~23P | 1 000圈后保持95% | [ |
67%NCM+33%AC//SCL | 92.9~60.9P | 173.3~92.4T | 0.2 C~7.73T | 10 000圈后保持80% | [ |
30%LFP+70%AC//MCMB | 25.2~18.4T | 69.02T | 4 C | 100圈后保持100% | [ |
80%LFP+20%AC//LTO | 96.8~57.2P | — | — | 500圈后保持93% | [ |
20%LFP+80%AC//HCL | 58.4~30P | 30~5.7F | 0.005~2F | 30 000圈后保持90% | [ |
40%NCM+60%AC//HCL | — | 30~3.0F | 0.01~5F | 40 000圈后保持92% | [ |
30%LFP+70%AC//HCL | 75~30P | 90~30T | 0.03~3T | 62 000圈后保持80% | [ |
80%LMO+5%AC//80%LTO+5%AC | 56.4~40.7T | 60~30F | 0.005~2.5F | 2 000圈后保持77.5% | [ |
77%NCM+3%CA//Li | 163.8~126.8P | — | — | 300圈后保持72.79% | [ |
1 | 李英峰,张涛,张衡,等 .太阳能光伏光热高效综合利用技术[J].发电技术,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 |
LI Y F, ZHANG T, ZHANG H,et al .Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy[J].Power Generation Technology,2022,43(3):373-391. doi:10.12096/j.2096-4528.pgt.22052 | |
2 | 李铮,郭小江,申旭辉,等 .我国海上风电发展关键技术综述[J].发电技术,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 |
LI Z, GUO X J, SHEN X H,et al .Summary of technologies for the development of offshore wind power industry in China[J].Power Generation Technology,2022,43(2):186-197. doi:10.12096/j.2096-4528.pgt.22028 | |
3 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J].发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, LIU Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
4 | 杨馥源,田雪沁,徐彤,等 .面向碳中和电力系统转型的电氢枢纽灵活性应用[J].电力建设,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 |
YANG F Y, TIAN X Q, XU T,et al .Flexibility of electro-hydrogen hub for power system transformation under the goal of carbon neutrality[J].Electric Power Construction,2021,42(8):110-117. doi:10.12204/j.issn.1000-7229.2021.08.013 | |
5 | 文劲宇,周博,魏利屾 .中国未来电力系统储电网初探[J].电力系统保护与控制,2022,50(7):1-10. doi:10.1109/mc.2017.52 |
WEN J Y,Z B, WEI L S .Preliminary study on an energy storage grid for future power system in China[J].Power System Protection and Control,2022,50(7):1-10. doi:10.1109/mc.2017.52 | |
6 | 廖东颖,朱丹蕾,谢保胜,等 .参与辅助服务的电化学储能系统调峰调频技术及机制探究[J].电工技术,2022 (6):127-131. |
LIAO D Y, ZHU D L, XIE B S,et al .Research on peak shaving and frequency modulation technology and mechanism of electrochemical energy storage system participating in auxiliary services[J].Electric Engineering,2022(6):127-131. | |
7 | 陶以彬,薛金花,王德顺,等 .面向电网调峰调频的储能电站综合性能评价[J].电源技术,2021,45(6):764-767. doi:10.3969/j.issn.1002-087X.2021.06.020 |
TAO Y B, XUE J H, WANG D S,et al .Comprehensive performance evaluation of BESS for power grid peaking and frequency regulation[J].Chinese Journal of Power Sources,2021,45(6):764-767. doi:10.3969/j.issn.1002-087X.2021.06.020 | |
8 | 张志,邵尹池,伦涛,等 .电化学储能系统参与调峰调频政策综述与补偿机制探究[J].电力工程技术,2020,39(5):71-77. doi:10.12158/j.2096-3203.2020.05.010 |
ZHANG Z, SHAO Y C,LUN T,et al .Review on the policies and compensation mechanism of BESS participation in the auxiliary service of frequency and peak modulation[J].Electric Power Engineering Technology,2020,39(5):71-77. doi:10.12158/j.2096-3203.2020.05.010 | |
9 | 闫庆友,史超凡,秦光宇,等 .基于近端策略优化算法的电化学/氢混合储能系统双层配置及运行优化[J].电力建设,2022,43(8):22-32. doi:10.12204/j.issn.1000-7229.2022.08.003 |
YAN Q Y, SHI C F, QIN G Y,et al .Research on two- layer configuration and operation optimization based on proximal policy optimization for electrochemical/hydrogen hybrid energy storage system[J].Electric Power Construction,2022,43(8):22-32. doi:10.12204/j.issn.1000-7229.2022.08.003 | |
10 | 谢学渊,廖长风,詹世军,等 .考虑N-K故障下系统频率稳定性的储能电站优化规划[J].智慧电力,2022,50(6):8-13. doi:10.3969/j.issn.1673-7598.2022.06.003 |
XIE X Y, LIAO C F, LU S J,et al .Optimal planning of energy storage power station considering system frequency stability under N-K fault[J].Smart Power,2022,50(6):8-13. doi:10.3969/j.issn.1673-7598.2022.06.003 | |
11 | 陈长青,李欣然,张冰玉,等 .基于多时间尺度的储能调峰调频协同控制策略[J].电力系统保护与控制,2022,50(5):94-105. |
CHEN C Q, LI X R, ZHANG B Y,et al .Energy storage peak and frequency modulation cooperative control strategy based on multi-time-scale[J].Power System Protection and Control,2022,50(5):94-105. | |
12 | 胡国荣,杜柯,彭忠东 .锂离子电池正极材料:原理、性能与生产工艺[M].北京:化学工业出版社,2017:1-30. doi:10.1016/j.electacta.2016.01.039 |
HU G R, DU K, PENG Z D .Cathode materials for lithium-ion batteries:principle,performance and production process[M].Beijing:Chemical Industrial Press,2017:1-30. doi:10.1016/j.electacta.2016.01.039 | |
13 | 李泓 .锂电池基础科学[M].北京:化学工业出版社,2021:84-144. doi:10.1016/j.jiec.2021.06.019 |
LI H .Fundamental sciences of lithium battery[M].Beijing:Chemical Industrial Press,2021:84-144. doi:10.1016/j.jiec.2021.06.019 | |
14 | 杨裕生 .续论电动汽车和化学蓄电[M].北京:科学出版社,2017:384-389. |
YANG Y S .View on electric vehicles and chemical power storage[M].Beijing:Science Press,2017:384-389. | |
15 | 魏飞,骞伟中 .碳纳米管的宏量制备技术[M].北京:科学出版社,2012:35-80. |
WEI F, QIAN W Z .Macrofabrication technology of carbon nanotubes[M].Beijing:Science Press,2012:35-80. | |
16 | 肖成伟 .电动汽车工程手册(第四卷:动力蓄电池)[M].北京:机械工业出版社,2019:405-427. |
XIAO C W .Electric vehicle engineering manual (volume 4:power storage batteries)[M].Beijing:China Machine Press,2019:405-427. | |
17 | 彭占磊,杨之乐,杨文强,等 .电化学储能参与电力系统规划运行方法综述[J].综合智慧能源,2022,44(6):37-44. doi:10.3969/j.issn.2097-0706.2022.06.004 |
PENG Z L, YANG Z L, YANG W Q,et al .Review on planning and operation methods for power system with participation of electrochemical energy storage systems[J].Integrated Intelligent Energy,2022,44(6):37-44. doi:10.3969/j.issn.2097-0706.2022.06.004 | |
18 | 梁晓瑜 .新能源参与电力系统调峰调频的仿真研究[J].能源与环保,2022,44(7):217-221. |
LIANG X Y .Simulation research on new energy participating in power system peak and frequency modulation[J].China Energy and Environmental Protection,2022,44(7):217-221. | |
19 | 周军,刘晓华 .光伏电站参与电网一次调频典型问题分析[J].青海电力,2022,41(2):49-52. |
ZHOU J, LIU X H .Analysis on typical problems of photovoltaic power station participating in primary frequency regulation of power grid[J].Qinghai Electric Power,2022,41(2):49-52. | |
20 | 宋珂,徐宏杰 .动力锂离子电池健康状态和剩余使用寿命研究综述[J].佳木斯大学学报(自然科学版),2021,39(4):71-75. |
SONG K, XU H J .Review of state of health and remaining useful life of power lithium-ion batteries[J].Journal of Jiamusi University (Natural Science Edition),2021,39(4):71-75. | |
21 | 黄子欣,吴永文,吴劲贤,等 .一种超长寿命高安全性快充电锂离子电池研制[J].当代化工研究,2021(9):166-167. doi:10.3969/j.issn.1672-8114.2021.09.078 |
HUANG Z X, WU Y W, WU J X,et al .Studies on the lithium ion battery relates to ultra-long life,high safety and fast charging[J].Modern Chemical Research,2021(9):166-167. doi:10.3969/j.issn.1672-8114.2021.09.078 | |
22 | 李大伟,孙晋敏,杨夏杰 .采用磷酸铁锂电池储能的一体化集中供电电源系统研究[J].中国设备工程,2022(15):73-75. doi:10.3969/j.issn.1671-0711.2022.15.032 |
LI D W, SUN J M, YANG X J .Research on integrated centralized power supply system using lithium iron phosphate battery energy storage[J].China Plant Engineering,2022(15):73-75. doi:10.3969/j.issn.1671-0711.2022.15.032 | |
23 | 汪伟伟,丁楚雄,高玉仙,等 .磷酸铁锂及三元电池在不同领域的应用[J].电源技术,2020,44(9):1383-1386. doi:10.3969/j.issn.1002-087X.2020.09.036 |
WANG W W, DING C X, GAO Y X,et al .Application of LFP and NCM batteries in different fields[J].Chinese Journal of Power Sources,2020,44(9):1383-1386. doi:10.3969/j.issn.1002-087X.2020.09.036 | |
24 | 韩亚伟,姜挥,付强,等 .超级电容器国内外应用现状研究[J].上海节能,2021(1):43-52. doi:10.13770/j.cnki.issn2095-705x.2021.01.008 |
HAN Y W, JIANG H, FU Q,et al .Research on application status of super-capacitors in domestic and overseas market[J].Shanghai Energy Saving,2021(1):43-52. doi:10.13770/j.cnki.issn2095-705x.2021.01.008 | |
25 | 张晓虎,孙现众,张熊,等 .锂离子电容器在新能源领域应用展望[J].电工电能新技术,2020,39(11):48-58. |
ZHANG X H, SUN X Z, ZHANG X,et al .Prospect of lithium-ion capacitor application in new energy field[J].Advanced Technology of Electrical Engineering and Energy,2020,39(11):48-58. | |
26 | LIU W J, ZHANG X, XU Y A,et al .Recent advances on carbon-based materials for high performance lithium-ion capacitors[J].Batteries & Supercaps,2021,4(3):407-428. doi:10.1002/batt.202000264 |
27 | 孙现众,张熊,王凯,等 .高能量密度的锂离子混合型电容器[J].电化学,2017,23(5):586-603. |
SUN X Z, ZHANG X, WANG K,et al .Lithium ion hybrid capacitor with high energy density[J].Journal of Electrochemistry,2017,23(5):586-603. | |
28 | 官亦标,沈进冉,李康乐,等 .电容型锂离子电池研究进展[J].储能科学与技术,2019,8(5):799-806. |
GUAN Y B, SHEN J R, LI K L,et al .Research progress on capacitive lithium-ion battery[J].Energy Storage Science and Technology,2019,8(5):799-806. | |
29 | 陈港欣,孙现众,张熊,等 .高功率锂离子电池研究进展[J].工程科学学报,2022,44(4):612-624. doi:10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014 |
CHEN G X, SUN X Z, ZHANG X,et al .Progress of high-power lithium-ion batteries[J].Chinese Journal of Engineering,2022,44(4):612-624. doi:10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204014 | |
30 | 张文佳,尹莲芳,谢乐琼,等 .影响高功率锂离子电池性能的因素[J].新材料产业,2022(1):62-64. |
ZHANG W J, YIN L F, XIE L Q,et al .Factors affecting the performance of high-power lithium-ion batteries[J].Advanced Materials Industry,2022(1):62-64. | |
31 | WU X L, GUO Y G, SU J,et al .Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries[J].Advanced Energy Materials,2013,3(9):1155-1160. doi:10.1002/aenm.201300159 |
32 | NAN C Y, LU J, CHEN C,et al .Solvothermal synthesis of lithium iron phosphate nanoplates[J].Journal of Materials Chemistry,2011,21(27):9994-9996. doi:10.1039/c0jm04126b |
33 | WANG J, GU Y J, KONG W L,et al .Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4 [J].Solid State Ionics,2018,327:11-17. doi:10.1016/j.ssi.2018.10.015 |
34 | NAOI K, KISU K, IWAMA E,et al .Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications[J].Energy & Environmental Science,2016,9(6):2143-2151. doi:10.1039/c6ee00829a |
35 | YI M Y, LI J, FAN X M, et al .Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes[J].Journal of Materials Chemistry A,2021,9(31):16787-16797. doi:10.1039/d1ta04476a |
36 | WANG B, WANG Q M, XU B H,et al .The synergy effect on Li storage of LiFePO4 with activated carbon modifications[J].RSC Advances,2013,3(43):20024-20033. doi:10.1039/c3ra44218g |
37 | LU L L, LU Y Y, ZHU Z X,et al .Extremely fast-charging lithium ion battery enabled by dual-gradient structure design[J].Science Advances,2022,8(17):6624. doi:10.1126/sciadv.abm6624 |
38 | SUN X Z, ZHANG X, ZHANG H T,et al .High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J].Journal of Power Sources,2014,270:318-325. doi:10.1016/j.jpowsour.2014.07.146 |
39 | MIN X Q, XU G J, XIE B,et al .Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J].Energy Storage Materials,2022,47:297-318. doi:10.1016/j.ensm.2022.02.005 |
40 | ZHANG H, YANG Y, XU H,et al .Li4Ti5O12 spinel anode:Fundamentals and advances in rechargeable batteries[J].Infomat,2022,4(4):12228. doi:10.1002/inf2.12228 |
41 | HAN C P, HE Y B, LIU M,et al .A review of gassing behavior in Li4Ti5O12-based lithium ion batteries[J].Journal of Materials Chemistry A,2017,5(14):6368-6381. doi:10.1039/c7ta00303j |
42 | 贾旭平 .美国A123公司新型电动车锂电池[J].电源技术,2009,33(12):1047-1048. doi:10.3969/j.issn.1002-087X.2009.12.002 |
JIA X P .New lithium batteries for electric vehicles of American A123 company[J].Chinese Journal of Power Sources,2009,33(12):1047-1048. doi:10.3969/j.issn.1002-087X.2009.12.002 | |
43 | YANG Z F, WANG J, CUI C J,et al .High power density & energy density Li-ion battery with aluminum foam enhanced electrode:fabrication and simulation[J].Journal of Power Sources,2022,524:230977. doi:10.1016/j.jpowsour.2022.230977 |
44 | YANG Z F, TIAN J R, Ye Z Z,et al .High energy and high power density supercapacitor with 3D Al foam-based thick graphene electrode:fabrication and simulation[J].Energy Storage Materials,2020,33:18-25. doi:10.1016/j.ensm.2020.07.020 |
45 | HU X B, DENG Z H, SUO J S,et al .A high rate,high capacity and long life (LiMn2O4 +AC)/Li4Ti5O12 hybrid battery-supercapacitor[J].Journal of Power Sources,2009,187(2):635-639. doi:10.1016/j.jpowsour.2008.11.033 |
46 | BÖCKENFELD N, PLACKE T, WINTER M,et al .The influence of activated carbon on the performance of lithium iron phosphate based electrodes[J].Electrochimica Acta,2012,76:130-136. doi:10.1016/j.electacta.2012.04.152 |
47 | SUN X Z, ZHANG X, HUANG B,et al .(LiNi0.5Co0.2Mn0.3O2+AC)/graphite hybrid energy storage device with high specific energy and high rate capability[J].Journal of Power Sources,2013,243:361-368. doi:10.1016/j.jpowsour.2013.06.038 |
48 | DU T, LIU Z E, SUN X Z,et al .Segmented bi-material cathodes to boost the lithium-ion battery-capacitors[J].Journal of Power Sources,2020,478:228994. doi:10.1016/j.jpowsour.2020.228994 |
49 | PING L N, ZHENG J M, SHI Z Q,et al .Electrochemical performance of MCMB/(AC+LiFePO4) lithium-ion capacitors[J].Chinese Science Bulletin,2013,58(6):689-695. doi:10.1007/s11434-012-5456-9 |
50 | CHEN S L, HU H C, WANG C Q,et al .(LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor:The effect of LiFePO4 content on its performance[J].Journal of Renewable and Sustainable Energy,2012,4(3):33114. doi:10.1063/1.4727929 |
51 | JIN L M, ZHENG J S, WU Q,et al .Exploiting a hybrid lithium ion power source with a high energy density over 30 W⋅h/kg[J].Materials Today Energy,2018,7:51-57. doi:10.1016/j.mtener.2017.12.003 |
52 | HAGEN M, YAN J, CAO W J,et al .Hybrid lithium-ion battery-capacitor energy storage device with hybrid composite cathode based on activated carbon / LiNi0.5Co0.2Mn0.3O2 [J].Journal of Power Sources,2019,433:126689. doi:10.1016/j.jpowsour.2019.05.095 |
53 | GUO X, GONG R Q, QIN N,et al .The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J].Journal of Electroanalytical Chemistry,2019,845:84-91. doi:10.1016/j.jelechem.2019.05.046 |
54 | RUAN D B, HUANG Y, LI L Y,et al .A Li4Ti5O12+AC/LiMn2O4+AC hybrid battery capacitor with good cycle performance[J].Journal of Alloys and Compounds,2017,695:1685-1690. doi:10.1016/j.jallcom.2016.10.318 |
55 | CHEN X F, MU Y, CAO G P,et al .Structure-activity relationship of carbon additives in cathodes for advanced capacitor batteries[J].Electrochimica Acta,2022,413:140165. doi:10.1016/j.electacta.2022.140165 |
[1] | 周丹, 袁至, 李骥, 范玮. 考虑平抑未来时刻风电波动的混合储能系统超前模糊控制策略[J]. 发电技术, 2024, 45(3): 412-422. |
[2] | 赵斌, 梁告, 姜孟浩, 邹港, 王力. 光储系统并网功率波动平抑及储能优化配置[J]. 发电技术, 2024, 45(3): 423-433. |
[3] | 李军徽, 陈国航, 马腾, 李翠萍, 朱星旭, 贾晨. 高风电渗透率下液流电池储能系统调峰优化控制策略[J]. 发电技术, 2024, 45(3): 434-447. |
[4] | 韩秀秀, 魏少鑫, 汪剑, 崔超婕, 骞伟中. 高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析[J]. 发电技术, 2024, 45(3): 494-507. |
[5] | 刘洪波, 刘永发, 任阳, 孙黎, 刘珅诚. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272. |
[6] | 陈志华, 尤梦凯, 蔡伟, 胡经伟, 胡兴, 张爱芳, 张科杰, 王伟. 考虑全寿命周期的储能电站综合评价模型[J]. 发电技术, 2023, 44(6): 883-888. |
[7] | 彭道刚, 税纪钧, 王丹豪, 赵慧荣. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615. |
[8] | 张宁, 朱昊, 杨凌霄, 胡存刚. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术, 2023, 44(5): 625-633. |
[9] | 石梦舒, 许小峰, 张继广, 李忆, 周保中, 乐鹰, 毕圣. 考虑电-氢市场的虚拟电厂两阶段优化策略研究[J]. 发电技术, 2023, 44(5): 645-655. |
[10] | 兰宇, 龙妍, 张哲豪, 阮金港. 可再生能源制氢跨省供应的技术经济可行性研究[J]. 发电技术, 2023, 44(4): 473-483. |
[11] | 许洪华, 邵桂萍, 鄂春良, 郭金东. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
[12] | 陈逸文, 赵晋斌, 李军舟, 毛玲, 屈克庆, 魏国庆. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304. |
[13] | 郭学伯, 范良迟, 许浈婧, 李有, 林俊, 陈林. 助力节能降碳的相变储热材料研究和应用进展[J]. 发电技术, 2023, 44(2): 201-212. |
[14] | 叶珍珍, 陈鑫祺, 张抒婷, 汪剑, 崔超婕, 张刚, 张磊, 钱陆明, 金鹰, 骞伟中. 离子液体型双电层电容器在45 ℃和3 V状态下的长周期运行研究[J]. 发电技术, 2023, 44(2): 213-220. |
[15] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||